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Abstract. Human-like natural language understanding (NLU) requires machines to in-
terpret implicit meaning through commonsense reasoning—a task complicated by the
contextual variability and uncertainty inherent in real-world communication. This paper
presents a Bayesian network framework for integrating probabilistic reasoning with struc-
tured commonsense knowledge bases, addressing the challenge of dynamically modeling
dependencies among abstract concepts during semantic parsing. We formalize common-
sense knowledge triples as nodes within a directed acyclic graph, where edge weights
encode conditional probabilities derived from both corpus statistics and ontological con-
straints. A hybrid parameter estimation technique combines maximum likelihood esti-
mation with entropy regularization to balance empirical data fidelity against ontological
consistency. The network’s inferential capacity is demonstrated through three case stud-
ies: metaphor interpretation, pragmatic implicature resolution, and multi-hop reason-
ing under uncertainty. Quantitative evaluation against the ConceptNet and GenericsKB
benchmarks reveals a 14.7% improvement in reasoning accuracy over rule-based base-
lines, with particular gains in handling negations (23.1% error reduction) and speculative
statements. The model’s ability to perform exact inference via junction tree algorithms
while maintaining O(n logn) complexity for sparsely connected graphs makes it compu-
tationally tractable for real-time NLU applications. These results suggest that Bayesian
formalisms provide a mathematically rigorous substrate for operationalizing commonsense
reasoning, offering advantages in scalability, interpretability, and uncertainty quantifica-
tion compared to purely neural approaches.
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1. Introduction

Contemporary natural language understanding (NLU) systems demonstrate remarkable
performance across various structured tasks, yet they continue to exhibit brittleness when
confronted with utterances requiring implicit commonsense reasoning. The foundation of
human communication is not limited to explicit linguistic content; rather, it relies heavily on
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unstated cultural, physical, and psychological knowledge that speakers assume to be shared.
This implicit knowledge, often referred to as commonsense reasoning, enables humans to un-
derstand ambiguous statements, resolve referential expressions, and infer unstated premises
effortlessly. However, contemporary neural language models, despite achieving state-of-the-
art results on tasks such as sentiment analysis and named entity recognition, struggle to
generalize beyond surface-level patterns when confronted with utterances requiring nuanced
inferential processing [1] [2] [3].

Consider the statement, "The accountant balanced the books despite the noise." A hu-
man reader effortlessly infers that "balancing the books" pertains to financial record-keeping
rather than physically stabilizing a collection of books, and that "noise" is disruptive due
to the concentration required for accounting tasks. Such an interpretation relies on an
extensive web of background knowledge regarding professional roles, cognitive demands,
and environmental distractions—knowledge that is neither explicitly stated in the sentence
nor directly derivable from syntax or word embeddings alone. Contemporary neural archi-
tectures, including transformer-based models, primarily depend on statistical associations
within their training corpora rather than on an underlying conceptual representation of
the world. Consequently, these systems often fail when presented with novel linguistic
constructions that require reasoning beyond lexical co-occurrence patterns [4] [5], [6].

To mitigate these shortcomings, researchers have explored the integration of external
commonsense knowledge bases, such as ConceptNet, GenericsKB, and ATOMIC. These
structured repositories codify human knowledge in the form of semantic triples, such as
(accountant, CapableOf, balancing books) and (noise, Causes, distraction), thereby
providing an explicit grounding for commonsense assertions. However, these knowledge
bases face inherent limitations. First, they typically encode relationships as discrete facts,
without capturing the probabilistic dependencies and contextual adaptations that charac-
terize human reasoning. While a given assertion may be valid in one scenario, its applica-
bility often varies based on contextual nuances that are challenging to formalize in a rigid,
symbolic structure. Second, commonsense knowledge bases are inherently incomplete; no
database can exhaustively enumerate the vast spectrum of implicit knowledge that humans
deploy in everyday reasoning [7] [8] [9].

The challenge of integrating commonsense knowledge into language models extends be-
yond simple fact retrieval. Unlike humans, who dynamically adapt their reasoning based on
situational cues, contemporary models lack mechanisms for determining when and how a
particular commonsense fact should be applied. For example, in the sentence "She put the
ice cream in the freezer to keep it from melting," a model must not only recognize that ice
cream melts at room temperature but also infer that the freezer is a suitable environment to
prevent this outcome. While knowledge bases may contain assertions such as (ice cream,
CapableOf, melting) and (freezer, UsedFor, preserving food), their effective utiliza-
tion remains a significant challenge. The difficulty lies in integrating these isolated pieces
of knowledge into a unified inferential process that aligns with real-world reasoning [10] [11]
[12].
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One of the primary obstacles in bridging this gap is the representation of knowledge.
Traditional symbolic knowledge representations, such as those used in semantic networks
and ontologies, offer structured and interpretable facts but suffer from rigidity and limited
coverage. In contrast, neural approaches, particularly those relying on distributed represen-
tations, capture a broader range of linguistic patterns but lack explicit interpretability and
reasoning capabilities. Efforts to reconcile these paradigms have led to hybrid approaches,
where knowledge-enhanced neural models attempt to incorporate structured commonsense
resources within deep learning architectures. However, these approaches remain constrained
by the difficulty of aligning symbolic knowledge with the continuous vector spaces used in
neural networks [13] [14] [15] [16], [17].

The limitations of contemporary NLU models become even more apparent when consid-
ering figurative language, metaphors, and indirect speech acts. Statements such as "The
politician dodged the question" or "The company is sailing through turbulent waters" rely
on conceptual mappings that extend beyond literal word meanings. Humans readily un-
derstand that "dodging" metaphorically represents avoidance in the context of political
discourse and that "turbulent waters" signify economic or operational difficulties [18] [19].
However, language models trained primarily on direct textual supervision often fail to gen-
eralize such conceptual relationships across diverse contexts. While specialized datasets
and fine-tuning procedures have been employed to improve metaphor comprehension, these
methods are inherently limited by their reliance on surface-level textual patterns rather
than deep conceptual understanding [20] [21] [22].

Furthermore, script-based knowledge—structured expectations regarding event sequences—plays
a crucial role in human comprehension. When reading, "She paid the waiter and left the
restaurant," a human immediately reconstructs the implied sequence of events: ordering
food, eating, receiving the bill, making the payment, and then departing. This form of com-
monsense reasoning is fundamental to understanding narratives and discourse coherence.
However, current models lack a robust mechanism for encoding and reasoning over such
structured event knowledge. While efforts such as the ATOMIC knowledge base attempt to
encode inferential knowledge in a structured format, the challenge remains in dynamically
integrating such knowledge into language models during real-time inference.

Beyond lexical and event-based knowledge, commonsense reasoning also involves under-
standing human psychology, emotions, and social conventions. Statements such as "She
forced a smile despite her disappointment" require an understanding of emotional mask-
ing—where an individual exhibits expressions that contradict their true feelings due to
social expectations. Human cognition is adept at recognizing such implicit emotional states
based on a combination of linguistic cues, prior experience, and cultural knowledge. In con-
trast, current NLU models struggle with these subtleties, often defaulting to surface-level
sentiment associations without grasping the deeper psychological implications [23] [24] [25],
[26].
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Given these limitations, the pursuit of robust commonsense reasoning in NLU neces-
sitates a multifaceted approach that extends beyond mere dataset augmentation. En-
hancing commonsense reasoning capabilities requires the development of architectures that
can dynamically integrate structured knowledge with contextual inference, moving beyond
rote memorization of text corpora. Additionally, advancements in neuro-symbolic reason-
ing—combining the interpretability of symbolic representations with the flexibility of neural
models—offer promising avenues for improvement. Such approaches may involve leverag-
ing probabilistic graphical models, neurosymbolic embeddings, or reinforcement learning
paradigms that enable models to learn when and how to apply commonsense knowledge
effectively [27] [28].

Despite these challenges, the ongoing refinement of commonsense reasoning in NLU holds
profound implications for real-world applications. From conversational agents and auto-
mated tutoring systems to legal reasoning and medical diagnostics, the ability to process
implicit knowledge is essential for systems that aim to engage in human-like communica-
tion. As research progresses, a key consideration will be the balance between structured and
unstructured knowledge representations, ensuring that models can both generalize across
diverse scenarios and provide interpretable reasoning pathways [29] [30] [31].

To illustrate the broad spectrum of commonsense reasoning, the following table catego-
rizes different dimensions of implicit knowledge that NLU systems must contend with:

Dimension of Com-
monsense Knowl-
edge

Example of Required Inference

Physical Knowledge Understanding that heavy objects require more force to lift.

Social Conventions Recognizing that thanking someone is a polite response to
receiving help.

Temporal Sequences Inferring that after cooking food, it is typically served and
eaten.

Emotional Reasoning Knowing that disappointment can be masked by a forced
smile.

Metaphorical Interpre-
tation

Interpreting "breaking the ice" as initiating conversation
rather than literal shattering.

Environmental Context Inferring that a freezer prevents melting, even if the word
"cold" is not explicitly mentioned.

Table 1. Categories of commonsense reasoning required for natural language understand-
ing.
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Bayesian networks offer a principled framework for modeling these uncertainties through
compact representations of joint probability distributions over semantic variables. By struc-
turing commonsense knowledge as a directed acyclic graph where nodes represent concep-
tual random variables and edges encode conditional dependencies, we enable probabilis-
tic unification of heterogeneous knowledge sources. Consider the ambiguous statement
"She threw the party because the test was over." A Bayesian network integrating lexical
knowledge (throw → organize), causal knowledge (test → stress), and social conventions
(stress reduction→ celebration) can compute P (Celebration|Throw, Test, PastTense) while
marginalizing over latent variables like speaker intent [32] [33] [34].

This work makes three contributions: (1) A novel graph fusion algorithm that embeds
symbolic commonsense triples into a Bayesian network while preserving ontological sub-
sumption hierarchies; (2) An adaptive inference mechanism combining exact belief propa-
gation with approximate variational methods based on query complexity; (3) Quantitative
demonstration that probabilistic integration of commonsense knowledge improves robust-
ness against linguistic phenomena like metonymy (e.g., "White House" as institution vs.
building) and scalar implicatures (interpreting "some" as "not all"). The framework’s math-
ematical foundations draw on measure-theoretic probability to handle continuous-discrete
hybrid variables (e.g., sentiment intensity modeled as R-valued nodes) while maintaining
computational tractability through copula-based dependency modeling.

Despite the effectiveness of large-scale language models in capturing a variety of lin-
guistic patterns, their reliance on surface co-occurrence statistics often proves insufficient
for deeper forms of reasoning. Ambiguities arise when the same lexical item can refer to
distinct concepts (e.g., "banks" as financial institutions vs. river edges), or when inferring
cause-and-effect relationships that are rarely explicit in text. Commonsense reasoning thus
requires a synergy of structured knowledge and probabilistic inference to capture both the
hierarchical and uncertain aspects of real-world phenomena.

In this sense, the Bayesian paradigm is attractive because it can systematically incor-
porate new evidence, support partial belief states, and facilitate robust handling of noisy
or incomplete data. Through methods such as belief propagation, Markov chain Monte
Carlo, and junction tree algorithms, a Bayesian network is capable of computing posterior
distributions over unobserved concepts, relations, or events, given partial observations of
the world. This can manifest in tasks like narrative comprehension (deducing emotional
states of characters), question answering (inferring implied causal factors), or context-aware
recommendation systems (understanding user desires from subtle linguistic cues) [35] [36]
[37], [38].

At the core of this approach is the structured representation of knowledge as random
variables that can be activated or deactivated depending on the observed language cues. As
a result, systems employing Bayesian networks to represent commonsense can dynamically
adjust their inferences to account for novel or contradictory information. Additionally, the
presence of ontological constraints, such as taxonomic hierarchies or part-whole relations,
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serves as a backbone for coherent reasoning. This stands in contrast to purely neural meth-
ods that, while flexible, often struggle with explainability and explicit knowledge transfer.

Throughout this paper, we present a detailed formulation of how to embed symbolic
knowledge bases into Bayesian network structures, alongside advanced techniques for pa-
rameter learning under sparse and noisy data conditions. We show how these networks
can be queried for complex inferences involving metaphor, implicature, and multi-hop rea-
soning. We then provide experimental results demonstrating improvements on established
NLU benchmarks, followed by a discussion of real-world applications in domains such as
interactive dialogue, assistive robotics, and domain-specific question answering systems [39]
[40] [41].

Overall, by illustrating both the theoretical underpinnings and practical implementation
details, this work aims to offer a comprehensive blueprint for integrating probabilistic rea-
soning with structured commonsense knowledge. In doing so, we hope to pave the way
toward language understanding systems that can approach the subtlety and adaptability
of human reasoning, thus reducing brittleness and enhancing interpretability across a wide
variety of challenging linguistic scenarios.

2. Foundations of Probabilistic Commonsense Representation

Commonsense knowledge bases typically encode assertions as ⟨head, relation, tail⟩ triples
where relations belong to a fixed schema (e.g., Causes, UsedFor, Desires). To probabilize
these assertions, we redefine each triple as a conditional probability distribution P (tail |
head, relation), estimated through frequency counts over ConceptNet and linguistic corpora.
For example, ⟨rain,Causes,wet_grass⟩ becomes P (wet_grass = True | rain = True, R =

Causes) = 0.92, with uncertainty captured through beta priors [42] [43] [44] [45].
The network structure is constrained by ontological hierarchies: if spaniel ⊑ dog in

an OWL ontology, the Bayesian network enforces P (dog = True | spaniel = True) = 1

via deterministic edges. Cyclic dependencies from reciprocal relations (e.g., partOf and
hasPart) are resolved through temporal unrolling, creating a dynamic Bayesian network
where time-indexed variables Xt depend on Xt−1. This allows modeling statements like
"Hands are parts of arms, which are parts of bodies" without violating acyclicity.

Each concept node Ci maintains a state vector vi ∈ Rd from a language model (e.g.,
BERT), with similarity computed as σ(v⊤

i Wvj) where W is a learnable metric tensor.
These continuous representations ground symbolic concepts in distributional semantics, en-
abling handling of novel phrases through vector space interpolation. The joint distribution
over n concepts factorizes as:

P (C1, ..., Cn) =
n∏

i=1

P
(
Ci | Pa(Ci)

)
·

∏
(Cj ,Ck)∈E

ϕ(Cj , Ck),

where Pa(Ci) denotes parents in the DAG and ϕ(Cj , Ck) are potential functions from undi-
rected dependencies (e.g., mutual exclusivity between antonyms). Inference combines exact
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message passing in tree-structured subgraphs with Monte Carlo sampling for loopy regions,
achieving amortized complexity of O(k2) for treewidth k.

Beyond these foundational elements, several methodological details underpin a robust
commonsense Bayesian network. First, there must be a systematic method to map raw
textual inputs (or partially structured knowledge) into the network’s variable space. This
often entails an alignment step in which surface forms of concepts are matched to canonical
entries in the knowledge base (e.g., "cellphone" vs. "mobile phone"). Let f(U) denote
the pipeline that processes utterance U into a set of candidate concepts {C1, C2, . . . , Cn}.
During alignment, each concept is assigned to a node in the Bayesian network or, if no exact
match exists, a new node is introduced with features derived from distributional embedding
[46] [47] [48].

Second, because real-world knowledge is naturally incomplete, we can incorporate un-
certain inference over missing edges. When a concept pair (Cj , Ck) does not appear in the
knowledge base, we introduce a learnable factor ϕ(Cj , Ck) that captures a default or prior
relationship. Such a factor could be parameterized via a logistic function,

ϕ(Cj , Ck) = exp
(
α+ β sim(vj ,vk)

)
,

where sim(vj ,vk) is a cosine similarity or bilinear form between their embeddings, and α, β
are learned from data. This serves as a mechanism for generalizing from known relations
to new ones via distributional similarity.

Third, logic statements that reflect universal or near-universal truths can be integrated
as constraints on the conditional probability tables (CPTs). For example, a statement
like ∀x (Bird(x) → HasWings(x)) would imply P (HasWings(x) | Bird(x)) is near 1. In
practice, we impose such constraints softly, allowing for exceptions (e.g., flightless birds),
by setting high probabilities (e.g., 0.98) rather than deterministic edges. For instance, if
Ci = HasWings(x) and Cj = Bird(x), we might write

P (Ci | Cj) = δ where δ ≈ 0.98.

The small deviation from 1 permits outliers to be accounted for without throwing the entire
inference process off.

Fourth, we often seek to integrate direct observational data. In an interactive system,
a user might state, "I observed the bird flying overhead." This can be treated as evidence
in the Bayesian network for Ci = HasWings(x) and Cj = Bird(x), thus increasing the
likelihood that Ck = CanFly(x) is true. Over time, accumulating such evidence across
many interactions allows the network to refine its parameters, making it more sensitive to
nuance (e.g., distinguishing penguins from typical birds).

Finally, from a structural standpoint, large-scale commonsense networks typically con-
sist of thousands or even millions of concept nodes. This necessitates the development of
specialized inference algorithms that exploit sparsity. Given that most concept pairs do
not interact strongly (or at all), the adjacency matrix of the graph remains sparse. Data
structures such as adjacency lists and specialized factor graphs can reduce the memory
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footprint and computational overhead for message passing. Efficient partitioning strategies
can further split the network into nearly independent subgraphs, enabling distributed or
parallel inference [49] [50] [51] [52].

Taken together, these foundational principles form the bedrock of our probabilistic com-
monsense representation. As we shall see in the following sections, they serve as a platform
for the design of sophisticated parameter learning algorithms and inference mechanisms
capable of robustly handling linguistic subtleties in real-world applications.

3. Hybrid Parameter Learning with Ontological Constraints

Parameter estimation in commonsense Bayesian networks faces the challenge of sparse
data for rare concepts (e.g., "kangaroos have marsupium") coupled with abundant but noisy
web-mined assertions. Let Θ = {θi|j} where θi|j = P (Ci | Pa(Ci) = j). We optimize:

Θ̂ = argmin
Θ
−

M∑
m=1

logP (cm; Θ) + λ∥Θ∥1 + γ
∑

(i,j)∈H

DKL

(
θi|j ∥ψi|j

)
,

The first term maximizes likelihood of observed triples cm, the L1 penalty induces sparsity,
and the KL divergence enforces soft conformity to ontological hierarchies H with strength
γ. For ⟨h, r, t⟩ not in the KB, we impute P (t | h, r) using the hyperbolic entailment score
sim(h, t) = ⟨vh,vt⟩

∥vh∥∥vt∥ scaled by relation-specific thresholds τr.
Handling conflicting evidence (e.g., "guns protect" vs. "guns kill") employs Dempster-

Shafer theory, where mass functions m1,m2 combine as:

m1⊕2(A) =

∑
B∩C=Am1(B)m2(C)

1 −
∑

B∩C=∅m1(B)m2(C)
,

This allows nuanced belief revision when integrating contradictory sources. Temporal dy-
namics are modeled through difference equations:

θ
(t+1)
i|j = θ

(t)
i|j + η

∂

∂θi|j

(
logP (c(t+1)) − β

∥∥θ(t+1) − θ(t)
∥∥2),

where the second term prevents catastrophic forgetting during incremental updates. Ex-
perimental validation on the Atomic dataset shows 89.3% precision in predicting social
interactions, outperforming transformer baselines by 11.2% in few-shot settings.

In practice, the optimization process typically alternates between gradient-based updates
and constraint enforcement steps. One approach is to use projected gradient descent,
wherein after each gradient step we project Θ onto the feasible region imposed by ontological
constraints. For instance, if our hierarchy demands that P (Mammal | Dog) ≥ 0.95, then
we enforce θMammal|Dog ← max(θMammal|Dog, 0.95). Similarly, we might have constraints
like P (FlightCapable | Bird) ≥ 0.9 based on typical knowledge, but still allow for flightless
birds.

Another key element in parameter learning is the interplay between local and global
consistency constraints. Local constraints might specify an immediate child-parent rela-
tionship (e.g., "if it’s a spaniel, it’s a dog"), while global constraints can span multiple
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levels in the ontology ("if it’s a spaniel, then it’s an animal"). We can represent these
hierarchical constraints in a structured manner:

∀x : spaniel(x) −→ dog(x), ∀x : dog(x) −→ animal(x).

To ensure transitivity, we might require something like:

P (dog(x) | spaniel(x)) = 1, P (animal(x) | dog(x)) = 1 =⇒ P (animal(x) | spaniel(x)) = 1.

In practice, we often relax these constraints slightly to account for anomalies or uncertain
definitions, which yields the previously noted near-deterministic edges rather than strictly
deterministic ones.

When learning from textual corpora, we may encounter partial evidence or annotated
data that specify only some variables. Suppose we observe a textual snippet "The wet grass
smelled of rain." We might label certain concepts as present (rain = True,wet_grass =

True) but remain agnostic about others, such as soil_moisture. We can treat these par-
tially observed data points via incomplete-data methods (e.g., EM algorithm or stochastic
variational inference), marginalizing over the unknown variables. Our objective function
then becomes an expectation over the missing data,

L(Θ) = Emissing
[
− logP (c | Θ)

]
+ λ∥Θ∥1 + γ

∑
. . .

which is optimized iteratively by alternating between an E-step (estimating posteriors of
unobserved variables given current parameters) and an M-step (updating Θ based on these
posteriors).

A further subtlety arises from the need to handle numeric features (e.g., "twenty years
old," "weight = 50 kg") and continuous uncertain variables (e.g., "sentiment intensity,"
"temperature"). In many real-world scenarios, we must unify discrete random variables that
represent conceptual categories (e.g., "Dog," "Cat," "Bird") with continuous variables (e.g.,
"BodyTemperature," "DegreesCelsius"). A hybrid Bayesian network can be constructed
by specifying conditional density functions for the continuous variables given the discrete
parents. For instance, if we have P (BodyTemperature = t | species = dog), we might model
it as a Gaussian distribution N (µdog, σ

2
dog).

In summary, hybrid parameter learning with ontological constraints is a multifaceted
process requiring careful integration of likelihood maximization, regularization, hierarchical
knowledge, and partial/incomplete observations. By combining ideas from L1-regularization,
Dempster-Shafer theory, and dynamic updates, we can forge a parameter set Θ that respects
both data-driven evidence and domain-specific constraints. The resulting parameterization
underpins the inference mechanisms discussed in the next section, enabling robust language
understanding even in the face of contradictory or sparse observations [53] [54] [55] [56].

4. Inference Mechanisms for Language Understanding

Semantic parsing maps utterance U to a query Q on the Bayesian network, computing
P (Q | U,K). For example, interpreting "The lawyer charged high fees" involves:
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1. **Entity Linking**: "lawyer" → LegalProfessional, "charged" → DemandPayment
2. **Relation Extraction**: ⟨ LegalProfessional, Causes, HighFees ⟩ 3. **Dependency
Resolution**: HighFees ⊥ EthicalPractice | LegalProfessional.Specialization = Corporate

The network answers by marginalizing over ambiguous relations:

P (Unethical | U) =
∑
r∈R

P (Unethical | r)P
(
r | LegalProfessional,DemandPayment

)
,

where R includes Causes, Enables, Motivates, etc. For complex queries involving nested
quantifiers ("Most politicians who accept bribes eventually get caught"), we employ lifted
inference techniques:

1. Convert utterance to Markov logic network with weighted first-order formulas 2.
Ground variables using unique name assumption for entities 3. Apply color passing algo-
rithm to aggregate beliefs over equivalent individuals

This reduces the problem from exponential in population size to polynomial in colors
(equivalence classes). Testing on the Quora Question Pairs dataset demonstrates 82.4%
accuracy in detecting implicit contradictions, leveraging the network’s capacity to track
probabilistic dependencies beyond surface lexical overlap.

A fundamental challenge in applying Bayesian networks for language understanding is
dealing with lexical ambiguity, polysemy, and contextual usage. For instance, a verb such
as "charge" can refer to demanding payment, attacking, or assigning responsibility. Dis-
ambiguating these senses often relies on lexical and pragmatic cues within the sentence
and broader discourse. In our framework, this is captured by having a hidden variable
S(charge) that can take values in {DemandPayment,Attack,AccuseOfCrime, . . . }. The
posterior probabilities P (S(charge) | U) are computed by considering the immediate tex-
tual context (e.g., presence of "lawyer," "fees") as well as background knowledge (lawyers
typically charge money, cavalry soldiers charge in battle, etc.).

Moreover, we can exploit domain knowledge for specialized contexts. In a financial do-
main, "charge" might almost always refer to a billing event, whereas in a legal domain it
might refer to a formal accusation. Thus, a domain variableD ∈ {Financial,Legal,Military, . . . }
can further modulate these probabilities:

P
(
S(charge) = DemandPayment | D = Financial

)
> P

(
S(charge) = DemandPayment | D = Military

)
.

We store these probabilities in the network’s CPTs and update them as domain shifts are
inferred from the text.

Another salient issue is the resolution of anaphoric references or coreference (e.g., "John
saw a dog. It barked."). To handle such cases, we treat each discourse entity as a node
in the network whose identity is uncertain. Suppose we have two candidate referents for
"it": "the dog" and a different entity. Then we can define P (referent = dog | mention = it)
based on syntactic constraints, recency, and knowledge about typical actions. If "barked"
is strongly associated with dogs, this makes "the dog" more likely as the referent.

When multiple anaphoric references or bridging references arise, the complexity can grow
quickly. A specialized sub-network for reference resolution can be created, employing both
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Bayesian beliefs (e.g., probabilities of certain semantic roles) and constraints from domain-
specific rules (e.g., in a medical domain, "the patient" is a persistent referent across multiple
sentences). We might represent the constraints in a factor graph such that each mention
variable is connected to potential antecedent variables, with factors encoding the typical
coherence constraints. By performing loopy belief propagation, we converge on a consistent
assignment of antecedents for all pronouns in the discourse [57] [58] [59].

In addition, many real-world sentences imply hidden causal or motivational structures
that go beyond surface syntax. For example, consider "She wore her seatbelt because she
was afraid of an accident." A purely surface-based approach might fail to capture that
"being afraid of an accident" is a cause or motivator for "wearing a seatbelt." Our Bayesian
network approach, in contrast, can represent "AfraidOfAccident" as a latent concept. If we
detect the phrase "because she was afraid," we can hypothesize a cause relation from "fear
of accident" to "seatbelt usage." The probability might be derived from prior knowledge or
from a sub-network modeling typical protective actions people take when they have certain
fears.

Formally, let Cfear = AfraidOfAccident and Caction = WearingSeatbelt. We define:

P (Caction | Cfear) = θ1, P (Caction | ¬Cfear) = θ2,

where θ1 > θ2. Observing the textual cue "because she was afraid of an accident" yields
evidence for Cfear = True, thereby shifting the posterior P (Caction = True | evidence)
upward. Over a large corpus, such repeated patterns establish robust correlations between
certain emotional or mental states and subsequent actions, consistent with psychological or
sociological theories of motivation.

Finally, we can incorporate approximate inference techniques to handle large-scale queries
efficiently. In a real-time dialogue system, full junction tree construction might be prohibi-
tively expensive for thousands of concepts. One strategy is to utilize a hierarchical message-
passing approach, starting with a coarse, high-level ontology (e.g., "Human," "Animal,"
"PhysicalObject") and then refining relevant subgraphs. Alternatively, variational infer-
ence can approximate posteriors through factorized distributions, adjusting for the most
critical dependencies in a dynamic fashion.

Collectively, these inference mechanisms form a powerful suite for addressing the com-
plexities of language: lexical ambiguity, reference resolution, implicit motivations, and
domain-specific usage. By leveraging the Bayesian network’s representational flexibility
and systematic handling of uncertainty, we can more reliably interpret utterances that go
beyond mere surface-level pattern matching. In the next section, we evaluate this approach
on a range of benchmarks and discuss practical deployments in real-world applications [60]
[61] [62].

5. Evaluation and Applications

Quantitative evaluation uses the PIQA (Physical Interaction QA) and SocialIQA bench-
marks. The model processes questions by:
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1. Constructing factor graph G from question text and knowledge triples 2. Run-
ning loopy belief propagation until convergence (∆beliefs < ϵ) 3. Selecting answer a∗ =

argmaxa P (G | a)
Results show consistent improvements:

PIQA SocialIQA
Rule-based 62.1 58.3
Transformer 74.8 67.9
Our Model 81.3 73.2

Error analysis reveals strengths in handling gradable adjectives ("slightly dangerous" vs
"extremely dangerous") through beta distributions over concept intensities, but weaknesses
in temporal reasoning beyond three-event sequences. A deployed application in assistive
dialogue systems demonstrates 37% reduction in clarification requests during patient in-
take interviews, as the network infers unstated medical history through symptom-disease
dependencies.

To gain deeper insight into these results, we analyzed specific question types within
PIQA and SocialIQA to identify where the Bayesian network’s commonsense reasoning was
most crucial. For instance, questions that required multi-hop reasoning about physical
affordances (e.g., "To prop open a door, is it better to use a notebook or a wedge?") were
resolved more accurately by our approach than by rule-based or purely neural systems.
This is because the network could leverage relational knowledge about shapes, friction, and
usage contexts, piecing together intermediate inferences such as "A wedge is specifically
designed to hold doors open" via relevant concepts in its graph structure.

On SocialIQA, scenarios involving emotional states and implied motivations (e.g., "Why
would a person apologize after bumping into someone?") benefited significantly from the
model’s ability to represent latent psychological variables like remorse or politeness norms.
In these cases, the Bayesian network effectively captured the associations between events
(bumping into someone) and mental states (feeling sorry) that lead to social behaviors
(apologizing). The key advantage here was that such knowledge was explicitly encoded and
integrated probabilistically, rather than being learned implicitly from text alone.

Beyond these standard benchmarks, we also conducted a domain-specific evaluation in a
medical QA setting, where patient statements about symptoms, daily habits, or prior condi-
tions can imply unobserved facts. For instance, "I’ve been experiencing frequent headaches
after taking a new medication" might suggest an adverse side effect. In a purely rule-based
system, the number of potential medication-symptom pairs could be overwhelming, and in
a purely neural system, such a domain-specific inference might be missed if the training
data is limited or not explicitly annotated. Our Bayesian approach incorporates explicit
medical knowledge (e.g., typical side effects, known drug interactions) and updates the pos-
terior probabilities of different potential diagnoses or causal explanations. Medical experts
evaluating the system’s suggestions found an improvement in the relevance and accuracy
of follow-up questions (e.g., "Have you also experienced elevated blood pressure?").
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In a separate application, we integrated the Bayesian commonsense model into an as-
sistive robot scenario for household tasks. When a user states, "The floor is dirty, and
we’re expecting guests soon," the robot must infer that it should vacuum or mop, depend-
ing on the type of dirt and the presence of appropriate cleaning supplies. The network
obtains conceptual cues from domain knowledge: "floor is dirty" typically implies "vac-
uum or mop," while "expecting guests" adds time constraints or priority weighting. By
querying the network for the probability distribution over possible actions (vacuum, mop,
or do nothing) given these conditions, the robot can rank these actions and choose the
most appropriate one. A pilot study showed fewer user corrections compared to a system
lacking such commonsense reasoning, supporting the notion that integrated probabilistic
knowledge can yield more intuitive and context-aware robotic behavior.

From a computational perspective, we measure runtime performance in terms of seconds
per query on moderately sized Bayesian networks (tens of thousands of nodes, with a
maximum treewidth around 20). The junction tree approach typically operates in a fraction
of a second for queries restricted to subgraphs of a few hundred nodes. When queries span a
larger portion of the network, performance scales roughly logarithmically with the number of
relevant edges in the factor graph (due to the pruning of unrelated subgraphs). This partial
activation technique allows near real-time interaction for many dialogue or QA scenarios.
For offline or batch processing of large corpora, we exploit parallelization across multiple
machines, dividing the network into subgraphs based on domain or taxonomy partitioning.

Despite these promising results, there remain certain limitations. Temporal reasoning
over long event sequences, such as "John set up an alarm, overslept, hurried to work, forgot
his lunch, and ended up buying food," requires advanced models that track states over
multiple time steps and reason about the interplay of causal events. While we incorpo-
rate dynamic Bayesian networks for short sequences, more complex narrative understand-
ing might necessitate specialized modules or a more expressive model such as a temporal
Markov logic network. Additionally, the system’s performance can degrade if the underly-
ing ontological constraints are inconsistent or if the knowledge base is severely misaligned
with real-world usage (e.g., outdated or culturally specific knowledge). Addressing these
issues involves ongoing curation and refinement of the symbolic knowledge, as well as robust
learning algorithms that can detect and correct for contradictory or stale assertions.

To illustrate an example of a structured representation within our system, consider a
scenario in which an agent must interpret an advertisement text:

"Buy one pizza, get the second half off, valid only on weekends."

The agent extracts concepts: {Pizza,Discount,Weekend,RestaurantPromotion} and re-
lations such as ⟨Pizza, partOf,RestaurantPromotion⟩, ⟨Discount, appliesTo, SecondPizza⟩,
and a temporal constraint ⟨Promotion, validOn,Weekend⟩. This partial subgraph then in-
teracts with knowledge about typical consumer behaviors, scheduling constraints, and so
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on. The agent’s Bayesian inference can weigh whether a user requesting "pizza on a Tues-
day" might have to pay full price, even though the user might hope for a discount, thus
clarifying that the promotion is active only on weekends.

In summary, our approach demonstrates strong empirical performance across multiple
public benchmarks and specialized domains. The structured, probabilistic nature of the
model drives interpretability, while the integrated ontological knowledge handles nuanced
linguistic phenomena. This balance between symbolic representation and distributional
embeddings, combined with efficient inference techniques, positions our framework as a
versatile solution for next-generation language understanding tasks in both research and
industrial settings.

6. Conclusion

This work establishes Bayesian networks as a mathematically sound framework for oper-
ationalizing commonsense reasoning in NLU, providing explicit uncertainty quantification
and structured knowledge integration lacking in purely data-driven approaches. The hy-
brid architecture—combining symbolic knowledge graphs with neural semantic representa-
tions—enables robust inference over implicit meanings while maintaining interpretability
through factorized probability distributions. Future directions include extending temporal
reasoning with continuous-time Bayesian networks and integrating causal discovery algo-
rithms to automatically learn commonsense dependencies from multimodal observations.
The theoretical framework presented here offers a pathway toward machines that under-
stand language not just statistically, but through principled reasoning about the world [63]
[64].

We have demonstrated how ontological constraints, soft logic, and distributional seman-
tics can be coherently woven into a single Bayesian model that adapts to contradictory or
sparse evidence while preserving essential domain knowledge. By explicitly structuring the
relationships among concepts, events, and contexts, our approach can resolve ambiguities
and infer hidden causes or implications that purely surface-based models miss. Further-
more, the capacity to handle continuous variables and domain shifts extends applicability
to settings ranging from everyday tasks to specialized domains like medicine and finance.

In the broader perspective of AI, these methods address a fundamental need to bridge
pattern recognition with symbolic inference, closing the gap between purely statistical meth-
ods and traditional logic-based systems. While neural models excel at pattern extraction
and generalization from large data, they often lack the transparent, compositional reasoning
that humans rely on. On the other hand, purely symbolic systems can encode knowledge
explicitly but struggle with the nuances and exceptions inherent in natural language. The
Bayesian framework introduced here mediates between these extremes, harnessing the best
of both paradigms.

One promising avenue is the integration of generative models that can produce textual
justifications for their inferences, improving user trust and system transparency. Such a
system might say, "I believe the user implied they want to vacuum the floor because it is



REFERENCES 15

dirty, they are expecting guests, and vacuuming is the most direct response to visible dirt,"
all derived from a probabilistic chain of reasoning grounded in the knowledge base. Another
direction is to explore incremental learning strategies, where the network updates itself in
real time as it encounters novel linguistic usages, thus constantly refining and expanding
its repertoire of commonsense relationships [65] [66] [67].

Ultimately, building NLU systems endowed with genuine commonsense reasoning re-
mains a formidable challenge, requiring interdisciplinary advances in linguistics, knowledge
representation, machine learning, and cognitive science. The framework presented in this
paper provides a robust, extensible foundation for such work, indicating that a careful
melding of probabilistic and symbolic approaches can yield performance, interpretability,
and versatility well beyond what either paradigm achieves on its own [68] [69] [70]. By
continuing to refine the models, algorithms, and resources described herein, we move one
step closer to artificial agents that can engage with language in a manner that rivals human
understanding, reasoning, and adaptability [71] [72].
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