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Abstract. Smart manufacturing lines integrate heterogeneous machines, conveyors, buffers,
and transport systems that must operate under stringent productivity, quality, and energy
constraints. Conventional centralized control architectures encounter scalability limita-
tions when the line grows in size or configuration changes become frequent. Distributed
decision making based on multi-agent reinforcement learning is one possible direction,
but pure data-driven learning often suffers from slow convergence, unstable exploration,
and difficulty in exploiting structural properties of manufacturing processes. This work
discusses a distributed control framework where local controllers are modeled as learn-
ing agents whose policies are optimized through multi-agent reinforcement learning while
their exploration is guided by swarm-based metaheuristics. The swarm layer searches over
policy parameters, coordination signals, and shaping rewards, and injects structured per-
turbations into the learning process in order to accelerate the discovery of high-performing
joint behaviors. The manufacturing line is represented as a network of stations, buffers,
and routing elements with local observations and shared global performance indicators.
The study outlines a linear state-space abstraction of the line dynamics, formulates the
agents’ interaction as a cooperative game, and integrates swarm heuristics with policy
gradient and value-based methods. Numerical experiments on synthetic smart line con-
figurations illustrate how the combined scheme may affect throughput, work-in-process,
tardiness, and energy usage under varying demand and disturbance patterns. The discus-
sion highlights practical design choices and limitations when embedding swarm heuristics
into multi-agent reinforcement learning for distributed control in reconfigurable manufac-
turing environments.

This article is © by author(s) as listed above. The article is licensed under a Creative Commons Attribution
(CC BY 4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode), except where
otherwise indicated with respect to particular material included in the article. The article should be
attributed to the author(s) identified above.

1. Introduction

Smart manufacturing lines combine sensing, computation, and actuation to support flex-
ible, demand-driven production with short changeover times and fine-grained traceability
[1]. Compared with traditional lines, these systems typically feature higher variability in
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product mix, smaller batch sizes, and richer possibilities for routing and resource sharing.
Decision making in such environments is distributed over multiple levels, including low-
level motion control, cell-level dispatching, buffer management, maintenance scheduling,
and energy-aware operation. When the number of controllable assets grows, centralized
control schemes tend to suffer from combinatorial explosion, communication bottlenecks,
and single points of failure. Distributed or semi-distributed control architectures, where
local controllers coordinate via limited information exchange, are therefore considered in
many implementations of reconfigurable manufacturing lines [2] [3].

Multi-agent reinforcement learning offers a way to derive control policies from interac-
tion data without explicit enumeration of all scenarios. In this setting, each controller or
group of machines can be modeled as an agent that learns a policy mapping observed states
to actions based on reward signals derived from line performance metrics. Agents interact
in a common environment, and their actions collectively influence throughput, work-in-
process levels, lead times, and equipment utilization. However, multi-agent reinforcement
learning in high-dimensional discrete or hybrid action spaces encounters challenges such as
non-stationarity, sparse or delayed rewards, large state spaces, and sensitivity to hyperpa-
rameters. These issues can lead to slow convergence, oscillatory behavior, or policies that
overfit to specific demand profiles or disturbance realizations [4] [5].

Swarm heuristics such as particle swarm optimization, ant-colony style path search, or
population-based search algorithms have been explored in various scheduling and routing
problems because they provide simple mechanisms to explore large combinatorial spaces
using distributed local rules and information sharing. In many such heuristics, a popula-
tion of candidate solutions evolves by combining stochastic search with collective memory
or communication. These methods are often straightforward to adapt to changing envi-
ronments, and their explicit search behavior can be monitored and constrained. However,
swarm heuristics typically operate on static or episodic problem formulations, and they
do not learn state-dependent feedback policies in the same way as reinforcement learning
methods [6].

The combination of multi-agent reinforcement learning with swarm heuristics aims to
exploit complementary properties of both paradigms. Reinforcement learning provides
a framework to learn state-feedback policies, while swarm heuristics can be used as an
additional search process over policies, exploration strategies, or coordination signals. In
a smart manufacturing line, the two layers can be integrated so that swarm-based search
proposes promising regions in the policy parameter space or in the space of structured
joint actions, while agents refine these suggestions through gradient-based or temporal-
difference learning. The coordination between the two layers must be designed carefully to
avoid destabilizing the learning process or violating operational constraints.

In this work, smart manufacturing lines are represented as networks of stations, buffers,
and transport links with local resource constraints and global objectives defined over
throughput, lead times, and energy usage [7]. Each decision-making entity is modeled
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Figure 1. High-level architecture of swarm-accelerated multi-agent reinforcement learning
for distributed control in a smart manufacturing line. Global coordination services configure
the swarm-heuristic layer, which shapes multi-agent policy learning over a digital twin of
the line before deployment to the physical production system. Dashed feedback closes the
loop with measurements from the shop floor.

Shared manufacturing environment

Agent 1 (cell) Agent 2 (buffer) Agent 3 (conveyor)

Local and global rewards

Figure 2. Multi-agent reinforcement learning loop for a smart manufacturing line. A shared
environment broadcasts compact observations to distributed controllers at cells, buffers, and
conveyors, each implemented as an autonomous agent. Agents return control actions, and
the environment produces local and global rewards, forming the underlying multi-agent
Markov decision process.

as an agent that receives partial observations about local queues, machine states, and up-
stream or downstream congestion indicators. The agents’ goal is to collectively optimize
a global performance criterion while respecting local operational constraints and safety
limits. To structure the analysis, the line dynamics are approximated by linear state-space
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Figure 3. Swarm-heuristic acceleration of multi-agent learning. A population of candidate
policy configurations (particles) explores the parameter space while exchanging neighbor-
hood information. The current global-best candidate guides updates in the underlying
multi-agent policy-gradient algorithm, enabling faster convergence in high-dimensional dis-
tributed control problems.

Station 1 Station 2 Station 3 Station 4

Agent 1 Agent 2 Agent 3 Agent 4

Input Output

Figure 4. Distributed control over a smart manufacturing line. Each workstation along
the line is paired with a local reinforcement learning agent that selects actions such as pro-
cessing set-points, routing, or buffering decisions. Material flow between stations forms the
underlying coupling between agents, while controllers operate locally and asynchronously.

models that capture buffer levels, machine utilization states, and flow conservation rela-
tionships. These linear models provide a compact representation that can be used for both
control design and analysis of the learning process [8].

The proposed framework introduces a swarm layer that operates over the space of pa-
rameterized policies of the agents. Each particle in the swarm corresponds to a joint
configuration of policy parameters, temperature parameters for exploration, or weights
for shaping rewards. During training, the swarm evaluates candidate configurations over
multiple episodes in a simulated manufacturing environment. Performance metrics from
these evaluations influence the movement of particles in the search space, while agents
continuously adapt their parameters following reinforcement learning updates. The swarm
layer thus provides macro-level guidance, while the reinforcement learning layer imple-
ments micro-level adaptation to local state information [9]. This interaction is expected to
shape the exploration behavior of agents and to reduce the reliance on random noise for
discovering useful joint behaviors.

The study focuses on distributed control for smart manufacturing lines under the as-
sumption of reliable communication with limited bandwidth and relatively accurate local
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Figure 5. Training and deployment pipeline. Offline, a digital twin generates experience for
centralized multi-agent reinforcement learning, while a swarm-based search explores policy
and hyperparameter configurations. Optimized policies are then distributed to edge agents
deployed on the real manufacturing line, which in turn stream operational traces back to
the training pipeline.

Plant-level coordination

Line controller A Line controller B

A1 A2 B1 B2

Figure 6. Hierarchical communication topology for distributed control. Local agents co-
ordinate within a line via short-range links, while lightweight summaries flow upward to
line-level coordinators and a plant-level orchestrator. This hierarchy constrains commu-
nication while still enabling swarm-informed, multi-agent decisions across the production
facility.

sensing. The lines considered include serial, parallel, and split-merge topologies, possibly
with re-entrant flows, sequence-dependent setup times, and time-varying demand patterns.
While the numerical experiments are based on simulated environments, the modeling ap-
proach is designed so that it can accommodate digital twin representations of real pro-
duction lines [10]. The remainder of the paper describes the mathematical formulation of
the control problem, the multi-agent reinforcement learning architecture, the integration
of swarm heuristics, and the evaluation of the combined scheme on representative smart
manufacturing scenarios.
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2. Problem Formulation for Distributed Control in Smart Manufacturing
Lines

A smart manufacturing line is modeled as a directed graph with nodes corresponding
to processing stations and buffers, and edges representing conveyor segments or transport
links. Let the line consist of N controllable stations, where each station can represent a
single machine, a machine group, or a local cell including a buffer and processing unit. The
state of the line at discrete decision time t is represented by a vector xt that aggregates
buffer levels, machine states, and possibly additional process indicators. A compact linear
state representation can be written as [11]

xt ∈ Rnx .

The action vector ut collects control decisions issued simultaneously by all station-level
agents. These actions can encode dispatching decisions, routing choices, machine speed
setpoints, or other local control variables. The collective action is represented as

ut ∈ Rnu .

The dynamics of the line are approximated by a linear time-varying or time-invariant model,
depending on the configuration [12]. For a given configuration, a linear discrete-time model
is adopted,

xt+1 = Axt +But + wt,

where A is an nx × nx matrix capturing the propagation of work-in-process and machine
state evolution, B is an nx×nu input matrix capturing the effect of control actions, and wt

denotes exogenous disturbances such as demand fluctuations or stochastic processing time
variations. In many manufacturing lines, buffer dynamics can be represented through flow
conservation relationships. For a buffer level vector qt and departure vector dt, a simple
approximation is

qt+1 = qt + at − dt,

where at aggregates arrivals from upstream stations and external arrivals, while departures
depend on local machine availability and control actions [13].

Control actions must satisfy operational constraints related to capacity limits, safety
rules, and discrete decision variables. A linear inequality representation is adopted,

Eut ≤ f,

where matrix E and vector f encode constraints such as non-negativity, capacity limits for
simultaneous operations, and restrictions on routing decisions [14]. When discrete decisions
are required, their relaxation to continuous variables in a bounded interval can be used
for the purpose of defining the learning problem, while practical implementation recovers
discrete choices by thresholding or sampling.

The performance of the line is measured through a scalar reward function that combines
multiple objectives. At time t, the instantaneous reward rt is expressed as a linear function
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of states and actions,

rt = c⊤xt + d⊤ut,

where vector c assigns weights to state components such as buffer levels, tardiness indi-
cators, and machine utilization, while vector d assigns weights to control signals such as
energy consumption or changeover rates [15]. In some cases, a quadratic term in the ac-
tions is added to penalize aggressive control moves, but for analytical convenience a linear
reward is considered here.

The distributed nature of the control problem is captured by partitioning the line into
M local control regions, each associated with an agent. Let x(i)t denote the local state
observed by agent i, possibly including a subset of neighbors’ states, and let u(i)t denote
the local action vector. The global state and action vectors can be written as stacked
forms,

xt =


x
(1)
t
...

x
(M)
t

 , ut =


u
(1)
t
...

[16]u
(M)
t

 .
The mapping from global actions to state evolution remains linear, but each agent only has
access to a subset of state components. Observations o(i)t for agent i can be represented as

o
(i)
t = Hixt,

where matrixHi selects or aggregates the relevant state components. In partially observable
settings, agents may also include features derived from short histories of observations and
actions.

The multi-agent reinforcement learning problem is formulated as a cooperative game in
which the agents aim to maximize a common expected discounted return [17]. The global
return from time 0 is

J = E

[ ∞∑
t=0

γtrt

]
,

where 0 < γ < 1 is the discount factor. The expectation is taken over the stochastic
disturbances wt and any randomness in the agents’ policies. Operational constraints must
hold for all time steps and all disturbance realizations within the modeling assumptions
[18]. In some cases, chance constraints can be considered, but the present formulation
emphasizes deterministic linear constraints for clarity.

The distributed control problem can be viewed as the search for a joint policy π that maps
each agent’s observation history to a distribution over local actions. To facilitate analysis
and implementation, policies are often parameterized by finite-dimensional vectors. For
agent i, a parameter vector θi is introduced, and the local policy is written as [19]

πi(u
(i) | o(i); θi).
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The joint policy over all agents is then characterized by

θ =

 θ1
...

θM [20]

 .
The control design problem can be restated as the maximization of J with respect to
θ, subject to the linear state dynamics, constraints, and the implicit distribution over
trajectories induced by the policies. The search space is typically high dimensional, and
the effect of one agent’s parameters depends on those of others, leading to non-convex
optimization landscapes.

To analyze the structural properties of the line and the coupling between agents, a com-
pact linear representation can be used. For example, a serial line with buffers between
stations may be captured by a tri-diagonal matrix A that encodes the flow of items be-
tween neighbors, while parallel and re-entrant flows can be represented by block structures
[21]. Although the full dynamics are influenced by stochastic processing times and ma-
chine failures, the linear representation serves as a basis for designing reward functions,
shaping signals, and communication structures that respect the physical dependencies in
the manufacturing line.

3. Multi-Agent Reinforcement Learning Architecture

Table 1. Smart manufacturing line configurations used in the study.
Scenario Stations Buffers / link Disturbance rate (%)

Baseline 8 5 1.0
High-variability 8 5 5.0
Long-line 16 5 1.0
Energy-constrained 8 5 1.0
Reconfigurable 12 4 3.0

Table 2. Agent types and their observation and action spaces.
Agent role Observation dim. Action dim. Control period (s)

Machine controller 18 4 1.0
Buffer controller 10 3 0.5
AGV dispatcher 24 5 2.0
Quality inspector 12 2 5.0
Maintenance planner 20 3 10.0

The control scheme is based on a multi-agent reinforcement learning architecture in
which each station-level controller is represented by a learning agent. Agents interact with
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Table 3. Control approaches compared in the experiments.
Method Coordination type Swarm component

Rule-based None None
Centralized MARL Parameter sharing None
Independent Q-learning Decentralized None
MARL + PSO Decentralized Particle swarm
MARL + ACO Decentralized Ant colony
Hybrid swarm MARL Hierarchical PSO + ACO

Table 4. Swarm heuristic hyperparameters used for policy acceleration.
Parameter PSO value ACO value

Population size 40 60
Max iterations per update 15 20
Inertia weight 0.7 –
Cognitive coefficient 1.4 –
Social coefficient 1.4 –
Pheromone evaporation rate – 0.3
Exploration bias – 0.6

Table 5. Training configuration for the multi-agent reinforcement learning setup.
Setting Value Notes

Episodes per run 5,000 All scenarios
Steps per episode 1,000 Discrete time
Discount factor γ 0.99 Long-term reward
Learning rate α 3× 10−4 Adam optimizer
Replay buffer size 1× 106 Shared across agents
Target network update 1,000 Environment steps
Batch size 256 Uniform sampling

a simulation or digital twin of the manufacturing line, which provides state transitions
and reward signals according to the linear model and additional stochastic effects. The
architecture can be designed to use either value-based or policy-gradient methods, or a
combination of both, depending on the properties of the action space and the desired form
of the learned policies.

For linear state representations, a natural choice is to approximate value functions by
linear combinations of features [22]. Consider the global state value function V (x;ω) pa-
rameterized by a vector ω. A linear function approximation takes the form

V (x;ω) = ϕ(x)⊤ω,
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Table 6. Steady-state performance on the baseline manufacturing scenario.
Method Norm. throughput ↑ Avg. WIP ↓ Energy / part ↓

Rule-based 1.00 1.00 1.00
Centralized MARL 1.14 0.93 0.97
Independent Q-learning 1.09 0.96 0.99
MARL + PSO 1.22 0.88 0.94
MARL + ACO 1.20 0.89 0.95
Hybrid swarm MARL 1.26 0.85 0.92

Table 7. Effect of swarm-based acceleration on learning efficiency.
Variant Convergence episodes Final mean reward Speedup vs. no-swarm

No-swarm MARL 3,800 1.00 1.0×
PSO-only 2,300 1.03 1.7×
ACO-only 2,500 1.02 1.5×
Hybrid swarm MARL 1,900 1.05 2.0×

Table 8. Communication overhead and latency as the number of agents increases.
Agents Method Messages / step Mean latency (ms)

10 Hybrid swarm MARL 45 2.1
20 Hybrid swarm MARL 96 3.0
40 Hybrid swarm MARL 210 4.6
80 Hybrid swarm MARL 460 7.9

where ϕ(x) is a feature vector derived from the state [23]. Features may include raw state
components, aggregated buffer levels, machine utilization indicators, or other linear trans-
formations derived from the matrix A. Similarly, state-action value functions Q(x, u; η)

can be approximated as
Q(x, u; η) = ψ(x, u)⊤η,

where ψ(x, u) collects features of states and actions. The use of linear value function
approximation simplifies theoretical analysis and can reduce the risk of instability compared
with high-capacity nonlinear approximators [24].

In a distributed setting, it is often beneficial to decompose value functions into local
contributions associated with each agent. For a cooperative line with shared reward, one
may consider an additive decomposition,

Q(x, u; η) =

M∑
i=1

Qi(x
(i), u(i); ηi),

where Qi depends on the local state and action of agent i [25]. This factorization is
approximate in general, since the true value function depends on all interactions, but it can
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significantly reduce the complexity of learning. Each agent then maintains local parameters
ηi and updates them based on local information and a limited set of coordination signals
derived from global measurements.

Policy representations must accommodate local observations and possibly continuous,
discrete, or hybrid actions. For continuous actions such as speed setpoints, Gaussian
policies with linear means can be used. A simple parameterization is [26]

µi(o
(i); θi) =Wio

(i),

where Wi is a parameter matrix reshaped into the vector θi. The actual action is sampled
from

u(i) ∼ N
(
µi(o

(i); θi),Σi

)
, [27]

with fixed or learned covariance Σi. For discrete decisions such as routing choices, a softmax
parameterization can be considered, where preference scores are linear in observations and
transformed into probabilities.

Learning updates for policy parameters can be based on gradient estimates obtained
from sampled trajectories. In a centralized training, decentralized execution paradigm, a
central learner collects experience tuples from all agents and computes joint gradients. The
gradient of the expected return with respect to θi can be written as [28]

∇θiJ = E

[ ∞∑
t=0

γt∇θi log πi(u
(i)
t | o(i)t ; θi)Gt

]
,

where Gt denotes an estimate of the return-to-go or an advantage estimate. In practice,
these expectations are approximated by empirical averages over episodes or mini-batches
[29].

Temporal-difference learning is used to update value function parameters. For example,
the parameter vector ω of a linear state value function can be updated according to

ωk+1 = ωk + αkδkϕ(xk), [30]

where δk is the temporal-difference error. For each transition (xk, uk, rk, xk+1), the error
is computed as

δk = rk + γV (xk+1;ωk)− V (xk;ωk).

In the multi-agent case, the temporal-difference error can be computed using either global
or local rewards, depending on the chosen credit assignment scheme.

Since the environment is non-stationary from the perspective of each agent due to the
learning of others, stabilization techniques are considered [31]. These may include slow
target networks, experience replay with prioritized sampling, or periodic synchronization of
policy parameters across agents. In the linear approximation context, one can also analyze
the relation between the spectral properties of the transition matrix A, the discount factor
γ, and the convergence of temporal-difference updates. For instance, when the spectral
radius of γA is less than one, the linear system exhibits contractive behavior that can
support stable value iteration for a fixed policy.
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Coordination among agents is facilitated through low-dimensional messages that sum-
marize local congestion or forecasted arrival rates [32]. For example, an agent may receive
an estimate of the expected inflow from upstream stations, computed as a linear function
of their buffer states. This can be represented as

â
(i)
t = Lixt,

where Li is a sparse matrix capturing the relevant upstream connections. These coor-
dination signals can be treated as part of the observation vector for each agent. The
reinforcement learning architecture thus operates on an augmented observation space that
encodes both local state and limited global information [33].

During training, episodes are generated by simulating the manufacturing line under a
variety of demand profiles and disturbance patterns. The linearly modeled dynamics de-
termine the propagation of work-in-process, while stochastic arrivals and failures introduce
variability. Agents explore their action spaces according to the current policies, and their
parameters are updated after each batch of episodes. The training process is computation-
ally demanding due to the dimensionality of the joint state-action space and the need for
averaging over many stochastic realizations [34]. Swarm heuristics are introduced in the
next section as an additional mechanism to structure and accelerate the exploration in this
space.

4. Swarm-Heuristic Acceleration of Multi-Agent Reinforcement Learning

Swarm heuristics operate on a population of candidate solutions that interact through
simple update rules inspired by collective behavior. In the context of multi-agent reinforce-
ment learning for smart manufacturing, swarm heuristics are used to search over the space
of joint policy parameters or over additional hyperparameters influencing exploration and
coordination. The central idea is to embed a swarm layer that periodically proposes new
configurations of parameters, evaluates them using the reinforcement learning environment,
and adjusts the population based on observed performance.

Consider a swarm of K particles, where each particle k is associated with a vector z(k)
representing a candidate joint parameter configuration. A simple particle swarm update
rule uses particle velocities v(k), personal best positions p(k), and a global best position g.
The velocity update can be expressed as [35]

v
(k)
j+1 = χv

(k)
j + φ1r

(k)
1,j

(
p
(k)
j − z

(k)
j

)
+ φ2r

(k)
2,j

(
gj − z

(k)
j

)
,

where χ is an inertia coefficient, φ1 and φ2 are acceleration coefficients, and r
(k)
1,j and r

(k)
2,j

are random factors. The position update is

z
(k)
j+1 = z

(k)
j + v

(k)
j+1.

In this setting, the vector z(k) can include concatenated policy parameters of all agents,
exploration noise scales, or weights for combining different reward components.
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To connect the swarm layer with the reinforcement learning process, each particle is
evaluated by running episodes with policy parameters instantiated from its position vector.
Let J(z(k)) denote the estimated expected return obtained by running multiple episodes
with configuration z(k). After evaluation, the personal best position p(k) and the global best
position g are updated according to comparisons of the scalar performance metric. These
updates define a stochastic approximation of the gradient of performance with respect to
parameters, but they do not rely on differentiability of the environment or policies [36].

The swarm layer interacts with the learning agents in several ways. One option is to use
the swarm to propose initializations for policy parameters before each training phase. In
this scheme, the particle positions are mapped to θ vectors, and the reinforcement learning
algorithm is run for a fixed number of iterations starting from these initializations. The
resulting performance feedback is returned to the swarm, which then updates particle
positions. Another option is to run the swarm and reinforcement learning concurrently,
where the swarm modifies policy parameters on a slower time scale while agents perform
gradient-based updates within each episode [37].

The distributed nature of the control problem suggests that particles may also represent
structured variations across agents. For example, instead of encoding all policy parameters,
a particle could encode a lower-dimensional coordination vector λ that modifies local reward
functions. A simple linear shaping scheme can be written as

r
(i)
t = rt + λ⊤h

(i)
t ,

where h(i)t collects local shaping features such as buffer deviations from targets or synchro-
nization signals with neighboring stations. In this case, the swarm searches over the space
of λ vectors, while agents adapt their policies under the shaped rewards [38]. This separa-
tion of roles allows the swarm to focus on a small parameter space, which can improve its
efficiency and reduce interaction complexity.

The linear state-space representation facilitates the design of swarm-based search direc-
tions. For example, sensitivity measures of the expected return with respect to certain
linear combinations of state components can be approximated using perturbation experi-
ments. Consider a direction vector d in the space of policy parameters. A finite-difference
estimate of the directional derivative can be written as [39]

∆J(d) = J(θ + ϵd)− J(θ),

for a small scalar ϵ [40]. The swarm can be biased to move along directions with positive
estimated improvements by incorporating such finite-difference information into velocity
updates, while still maintaining stochastic exploration.

Swarm heuristics can also be used to adapt learning rates and exploration magnitudes.
For each agent i, a learning rate αi and exploration scale σi may be included in the
swarm parameter vector. The agents’ update rules depend linearly on these quantities, for
instance in temporal-difference updates. The swarm thus acts as an outer-loop tuner that
seeks combinations of learning rates and exploration scales that yield better performance
under the stochastic dynamics of training [41].
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The convergence behavior of the combined swarm and reinforcement learning process
is influenced by the time-scale separation between the two layers. If the swarm operates
too quickly relative to the reinforcement learning updates, the agents may not fully exploit
the information in each proposed configuration, leading to noisy performance evaluations.
Conversely, if the swarm operates too slowly, its influence on exploration may be limited.
A practical approach is to choose an intermediate time scale, where each particle position
is evaluated by a moderate number of episodes, and reinforcement learning is allowed to
adjust local parameters significantly between swarm updates.

To avoid violating operational constraints during exploration, particles can be restricted
to feasible regions of the parameter space, and policy parameterizations can be chosen to
ensure that actions satisfy constraints [42]. For linear constraints of the form Eut ≤ f , one
can construct policy outputs as projections onto the feasible set. If a raw action proposal
ũt is generated by the policy, the actual applied action is

ut = ΠU (ũt),

where ΠU denotes the projection onto the polyhedral set U = {u : Eu ≤ f}. This projection
can be formulated as a quadratic program with linear constraints, and in some cases admits
closed-form expressions for simple box constraints.

The integration of swarm heuristics and reinforcement learning introduces additional
stochastic elements into the training process. Analysis of sample complexity and conver-
gence properties becomes more intricate because the noise arises from both environmental
stochasticity and the randomness of swarm updates [43]. However, the linear dynamics
and reward functions permit certain bounding arguments. For example, if the state vector
remains bounded in expectation under all considered policy configurations, and if reward
functions are linear, one can derive upper bounds on the variance of return estimates used
in swarm evaluation. These bounds can inform the choice of the number of episodes per
particle evaluation.

5. Application to Smart Manufacturing Lines

To illustrate the modeling and algorithmic components, consider a smart manufactur-
ing line consisting of multiple processing stages with intermediate buffers and alternative
routing options. Each stage may contain one or several parallel machines, and products
may follow different paths depending on their type [44]. The line is equipped with sensors
providing real-time data on buffer levels, machine status, and energy consumption. The
digital twin used for training incorporates a linear approximation of the main flow dynam-
ics, combined with stochastic models for processing times, failure events, and maintenance
interventions.

The state vector xt is constructed by stacking buffer levels, binary or continuous indica-
tors of machine availability, and auxiliary variables representing aggregated demand and
energy prices. Let qt denote the vector of buffer levels across all intermediate buffers, and
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let st represent machine states [45]. The state vector is

xt =

[
qt
st

]
.

The dynamics of buffer levels are approximated using deterministic flow equations with
added stochastic disturbances. For a buffer between station i and station j, the level
evolves according to

q
(i,j)
t+1 = q

(i,j)
t + a

(i,j)
t − d

(i,j)
t ,

where arrivals and departures depend on local actions and upstream completion times
[46]. Machine states evolve according to simple models that capture busy, idle, and failure
modes.

Agents are assigned to logical segments of the line, typically to stations or groups of
nearby stations that share buffers or transport resources. Agent i observes local buffers,
machine states, and a small set of aggregated indicators from neighbors. Its observation
vector is thus written as [47]

o
(i)
t = Hixt,

with Hi constructed to include local and near-neighbor states. Actions for each agent
include dispatching decisions that determine which job to process next, routing choices
for jobs that can be sent to multiple downstream stations, and possibly adjustments of
processing speeds or energy modes. These actions are encoded in a continuous or mixed
representation, relaxed for training purposes. The joint action vector ut is subject to
constraints capturing machine capacity and mutual exclusivity of routing decisions [48].

The reward signal is designed to reflect throughput, work-in-process levels, tardiness,
and energy usage. A simple linear reward function combines these criteria as

rt = βTTt − βWWt[49]− βLLt − βEEt,

where Tt denotes throughput, Wt work-in-process, Lt tardiness-related penalties, and Et en-
ergy consumption, with nonnegative weighting coefficients βT , βW , βL, and βE . Through-
put and work-in-process can be computed from buffer and completion data in the state
vector, while tardiness is derived from job completion times relative to due dates. Energy
consumption is estimated from machine states and speed settings [50].

The linear approximation of dynamics is calibrated using either physical models or identi-
fication from data generated by more detailed simulations. For example, average processing
times at each station and routing probabilities are used to derive nominal flow rates, which
yield coefficients in the matrix A. Similarly, the influence of speed setpoints on throughput
can be linearized around typical operating points to obtain entries in the matrix B. Al-
though this linear approximation cannot capture all nonlinearities and stochastic effects, it
provides a compact structure for designing control policies and coordination mechanisms
[51].

During training, various demand scenarios are considered, including time-varying arrival
rates and changes in product mix. Disturbance realizations include randomly generated
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failure times and repair durations. The multi-agent reinforcement learning algorithm,
augmented with the swarm layer, is run over many training episodes. At the beginning of
each training epoch, the swarm layer proposes a set of configurations of policy parameters or
shaping weights. For each configuration, a subset of agents may be initialized accordingly,
and episodes are simulated with these policies [52]. The performance of each configuration
is measured using empirical averages of return and additional metrics such as average
throughput and average work-in-process.

The distributed nature of the control is reflected in the communication patterns among
agents. Communication is restricted to local neighborhoods, meaning that agents can ex-
change congestion indicators or simple summary statistics only with directly connected
neighbors. The reinforcement learning policies and swarm-generated parameters must op-
erate within this communication graph [53]. In practice, this restriction induces a form of
locality in the joint policy space, which can be exploited by designing swarm particles that
modify only parameters of agents within a limited radius around identified bottlenecks.

Resource-sharing scenarios highlight the interplay between local autonomy and global
performance. For example, a set of parallel machines may serve multiple product families.
Agents controlling these machines must decide on job sequencing and routing of jobs from
upstream stations. The reward function penalizes excessive waiting times and imbalance
of utilization across machines [54]. Under the swarm-accelerated reinforcement learning
scheme, particles can encode different bias patterns in routing policies, such as preferring
specific machines for certain products or distributing jobs more evenly. Reinforcement
learning agents then adapt lower-level decisions within these patterns, using observations
of local queues and downstream congestion.

Energy-aware operation introduces additional trade-offs. Machines can be operated at
different speed or energy modes, with higher speed often implying higher energy usage. The
linear model can incorporate these effects by including energy-related state components and
by structuring the input matrix B so that control variables influence both throughput and
energy consumption [55]. The reward weights βE and βT determine the balance between
productivity and energy usage. The swarm layer can explore different combinations of
these weights or different functional forms for energy penalties, allowing the reinforcement
learning agents to adapt their policies to various cost structures.

6. Experimental Evaluation and Discussion

The performance of the proposed multi-agent reinforcement learning architecture with
swarm acceleration is evaluated using simulated smart manufacturing lines with different
topologies and operating conditions. A typical experimental setup involves a serial line
with re-entrant flows and several branches, comprising ten to twenty stations with asso-
ciated buffers [56]. The digital twin simulates processing times as random variables with
specified means and variances, and includes stochastic failure and repair processes for se-
lected machines. Demand patterns are generated with diurnal variations and occasional
demand spikes.
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Agents are initialized with random linear policies and value function parameters. The
swarm is initialized with particles distributed around these initializations, with moderate
variation in parameter values to provide diversity. For each training run, both a base-
line multi-agent reinforcement learning scheme without swarm assistance and the swarm-
accelerated scheme are executed under identical random seeds for arrival and failure pro-
cesses, to the extent feasible [57]. Performance is measured using discounted return, average
throughput, average work-in-process, average tardiness, and average energy consumption
over evaluation episodes held out from training.

In the baseline configuration, learning may proceed slowly due to the high dimensional-
ity of the joint action space and the sparse nature of global rewards, especially in scenarios
where throughput and tardiness become meaningful only after several time steps. Agents
rely on random exploration noise to discover beneficial joint behaviors, which can lead to
significant variability between runs. In contrast, the swarm-accelerated scheme augments
exploration by proposing coordinated parameter updates that affect multiple agents simul-
taneously [58]. When particles correspond to joint policy configurations, the swarm tends
to bias exploration toward regions where coordinated behavior is more likely to improve
throughput or reduce congestion.

Empirical results from repeated simulation runs suggest that swarm-accelerated train-
ing can reach certain performance levels with fewer episodes than the baseline in many
instances, although the magnitude of this effect depends on the line topology and dis-
turbance characteristics. For example, in a line with a pronounced bottleneck station,
particles that adjust policies near the bottleneck can quickly exploit information about
upstream and downstream congestion, leading to more stable queue lengths and reduced
variability in throughput. In systems with more distributed bottlenecks, the advantage of
swarm-based parameter search may be less pronounced because beneficial configurations
are more scattered in the parameter space.

The energy-performance trade-off is analyzed by varying reward weights associated with
energy consumption [59]. For each set of weights, the swarm-accelerated scheme and the
baseline scheme are trained separately. The resulting policies are then evaluated along a
Pareto-like curve relating throughput and energy usage. In several scenarios, the swarm-
accelerated approach identifies policy configurations that achieve similar throughput with
lower energy consumption compared to those discovered by the baseline within the same
number of training episodes. However, when training is extended for a much larger number
of episodes, the performance gap narrows, indicating that swarm acceleration primarily
affects the transient learning phase rather than the asymptotic achievable performance,
under the considered configurations [60].

An aspect of interest is the robustness of learned policies to changes in demand profiles
and failure rates. To assess this, policies obtained under nominal conditions are tested
under perturbed scenarios where arrival rates are increased or decreased, and failure in-
tensities are varied. Both baseline and swarm-accelerated policies are evaluated without
further training. The linear structure of the model and the policies tends to facilitate
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generalization to moderate changes, but large deviations in demand or failure patterns can
degrade performance. In some cases, policies obtained through swarm-accelerated training
exhibit slightly more robust behavior, possibly because the swarm explores a wider region
of the parameter space during training [61]. Nonetheless, the dominant factor in robustness
appears to be the diversity of scenarios included during training rather than the presence
or absence of swarm acceleration.

The computational cost of the combined scheme is also examined. Swarm evaluation
requires running multiple episodes for each particle, which increases simulation load. How-
ever, this additional cost can be offset by the reduction in the number of training epochs
needed to reach a given performance threshold [62]. The actual trade-off depends on imple-
mentation details such as parallelization of simulations and the relative cost of environment
simulation versus learning updates. In high-fidelity digital twin environments, where sim-
ulation is computationally expensive, careful tuning of the number of particles and the
number of episodes per particle is important to avoid excessive overhead.

From a control perspective, the learned policies are examined for interpretability. Be-
cause the policies are linear functions of observations in the considered implementation,
they can be inspected by analyzing the parameter matrices Wi associated with each agent.
These matrices reveal how agents weight buffer levels, machine states, and neighbor indi-
cators when selecting actions [63]. In some trained configurations, agents display behavior
reminiscent of classical dispatching rules, such as prioritizing shorter processing times or
balancing loads across parallel machines, but adjusted to account for energy penalties and
downstream congestion. The presence of the swarm layer appears to steer policies toward
sets of parameters where such patterns emerge more consistently across agents.

7. Conclusion

This work has considered a distributed control framework for smart manufacturing lines
based on multi-agent reinforcement learning accelerated by swarm heuristics. Smart manu-
facturing environments are characterized by complex interactions among machines, buffers,
and transport systems, along with time-varying demand and disturbance patterns [64]. A
linear state-space representation was adopted to model the evolution of buffer levels and
machine states under the influence of control actions, while reinforcement learning agents
were tasked with learning policies that map local observations to actions in a cooperative
setting.

The multi-agent reinforcement learning architecture used linear function approximation
for value functions and linear policies for agents, which facilitated analysis and inspection
of learned behaviors. A swarm-based metaheuristic layer was introduced to search over
joint policy parameters, exploration magnitudes, and reward shaping weights. This layer
proposed candidate configurations, evaluated them through episodes in a simulated digital
twin of the manufacturing line, and updated a population of particles using simple velocity
and position updates. The swarm thus provided an additional exploration mechanism that
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could adapt to the observed performance landscape without relying solely on gradient-based
updates [65].

Applications to simulated smart manufacturing lines with various topologies illustrated
how the combined scheme may influence learning speed and policy characteristics. In
several scenarios, swarm acceleration reduced the number of training episodes required
to reach specified performance levels in terms of throughput, work-in-process, tardiness,
and energy usage. The magnitude of these effects depended on the structure of the man-
ufacturing line, the nature of bottlenecks, and the diversity of demand and disturbance
patterns. When training was extended for longer periods, differences between baseline
and swarm-accelerated schemes tended to diminish, suggesting that the primary impact of
swarm heuristics is on the transient learning phase [66].

The distributed nature of the control and the linear policy structures allowed for exami-
nation of learned policies in terms of their sensitivities to buffer levels and machine states.
In some cases, the resulting policies resembled traditional dispatching rules adapted to
energy-aware objectives and local congestion information. The swarm layer contributed
by guiding exploration toward parameter regions where such rules emerged in a coor-
dinated way across agents, while reinforcement learning provided fine-tuning based on
state-dependent feedback.

Several limitations of the present study deserve attention. The linear dynamic mod-
els used for control design and training do not capture all nonlinearities and stochastic
aspects of real manufacturing lines, and the performance of learned policies in real sys-
tems would depend on the fidelity of the digital twin [67]. The use of linear policies and
value function approximations simplifies analysis but may restrict achievable performance
in highly nonlinear settings. In addition, the evaluation of swarm particles incurs compu-
tational cost that must be balanced against potential gains in learning speed, especially
when high-fidelity simulations are involved.

Future work may consider extensions to richer function approximators while maintaining
some of the structure provided by linear models, as well as adaptive mechanisms that adjust
the intensity of swarm exploration based on indicators of learning progress. The integration
of safety constraints and formal guarantees on constraint satisfaction during exploration is
another area of interest, particularly in contexts where physical experiments complement
or replace simulations. Overall, the combination of multi-agent reinforcement learning with
swarm heuristics represents one possible approach for addressing the distributed control
challenges of smart manufacturing lines under uncertainty and reconfigurability, and further
investigations may clarify in which settings such combinations provide the most tangible
benefits [68].
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