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Abstract. We present a mathematical model that captures the intricate relationship be-
tween sensor node placement, beamforming optimization, and network lifetime maximiza-
tion under real-world constraints. Our approach formulates a non-convex optimization
problem, which we address through a multi-stage iterative algorithm with guaranteed
convergence. We derive closed-form solutions for optimal power allocation across col-
laborating sensor nodes and introduce a distributed implementation that relies on local
information exchange for scalability and efficiency. Extensive numerical simulations show
that our proposed framework reduces energy consumption by up to 47% compared to
traditional methods while preserving quality-of-service requirements. Additionally, we
establish theoretical bounds on achievable beamforming gains as a function of network
density and topology, demonstrating that our method asymptotically reaches the the-
oretical upper limit in dense deployments. To validate the real-world applicability of
our approach, we test our techniques using actual sensor data from urban environments,
confirming their effectiveness in critical smart city applications, including environmental
monitoring, public safety, and intelligent transportation systems.
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1. Introduction

The proliferation of Internet of Things (IoT) devices and wireless sensor networks (WSNs) has
become a cornerstone for the realization of smart city infrastructure [1]. These networks consist of
numerous sensor nodes deployed throughout urban environments to collect, process, and transmit
data related to various municipal functions such as traffic management, environmental monitoring,
public safety, and utility management [2]. A critical challenge in sustaining these networks is
managing the limited energy resources of sensor nodes, which are typically battery-powered and
expected to operate autonomously for extended periods [3], [4].

Collaborative beamforming has emerged as a promising technique to address the energy effi-
ciency challenges in WSNs [5], [6]. By synchronizing the transmission of multiple sensor nodes,
collaborative beamforming enables the formation of a virtual antenna array, which can significantly
enhance the effective transmission range and reduce the overall energy consumption of the network
[7]. However, implementing collaborative beamforming in practical smart city applications presents
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several challenges, including synchronization requirements, the heterogeneity of sensor nodes, and
the dynamic nature of urban environments.

This paper addresses these challenges by developing a comprehensive framework for energy-
efficient collaborative beamforming in WSNs specifically tailored for smart city applications. We
formulate the problem as a non-convex optimization that jointly considers node selection, power
allocation, and beamforming vector design to maximize network lifetime while ensuring reliable
data transmission [2]. Our approach takes into account practical constraints such as imperfect
synchronization, channel estimation errors, and heterogeneous energy availability across sensor
nodes.

The proposed framework introduces several key innovations. First, we develop a mathematical
model that captures the relationship between spatial node distribution and achievable beamforming
gain in urban environments characterized by complex propagation conditions. Second, we propose
a multi-stage iterative algorithm that decomposes the original non-convex problem into a series of
convex subproblems, each with a closed-form solution. Third, we design a distributed implementa-
tion that requires only local information exchange, making it suitable for large-scale deployments
with minimal coordination overhead.

The remainder of this paper is organized as follows. Section 2 presents the system model and
problem formulation, establishing the mathematical foundation for our approach [3]. Section 3 de-
velops the energy-efficient collaborative beamforming algorithm and analyzes its theoretical prop-
erties. Section 4 extends the basic framework to account for practical implementation challenges
in urban environments. Section 5 presents extensive simulation results and performance analysis.
Finally, Section 6 concludes the paper and discusses directions for future research.

2. System Model and Problem Formulation

We consider a wireless sensor network consisting of N sensor nodes randomly distributed in a
two-dimensional plane within an urban environment. Let N = {1, 2, . . . , N} denote the set of all
sensor nodes. Each node i ∈ N is characterized by its position coordinates (xi, yi), initial energy
E0

i , and instantaneous residual energy Ei(t) at time t. The network includes a fusion center located
at position (x0, y0) that serves as the data collection point.

2.1. Channel Model. The wireless channel between sensor node i and the fusion center is modeled
as:

hi =
αi

d
γ/2
i

ejθi

where di =
√
(xi − x0)2 + (yi − y0)2 is the Euclidean distance between node i and the fusion

center, γ is the path loss exponent, αi is the small-scale fading coefficient modeled as a Rayleigh
random variable, and θi is the phase shift which depends on the distance and the carrier frequency.
For urban environments, we adopt a more sophisticated path loss model that accounts for non-line-
of-sight propagation: [4]

hi =
αi

d
γ/2
i

ejθi ·
K∏

k=1

(
1 + βke

−λkdi,k
)
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where K represents the number of significant scatterers, di,k is the distance from node i to
scatterer k, and βk and λk are environment-dependent parameters that characterize the impact of
the scatterer.

To account for the urban canyon effect common in city environments, we modify the path loss
exponent γ based on the local building density:

γ(xi, yi) = γ0 +∆γ · ρB(xi, yi)

where γ0 is the base path loss exponent, ∆γ is the maximum additional path loss, and ρB(xi, yi) ∈
[0, 1] represents the normalized building density at coordinates (xi, yi).

2.2. Energy Consumption Model. The energy consumption at node i is modeled as:

Econsume
i (t) = P tx

i (t) · Ttx + P circuit
i · Tactive + P sleep

i · (Ttotal − Tactive)

where P tx
i (t) is the transmission power at time t, Ttx is the transmission duration, P circuit

i is
the circuit power consumption during active periods, P sleep

i is the power consumption during sleep
mode, Tactive is the active duration, and Ttotal is the total duration of a reporting cycle.

The residual energy of node i evolves according to:

Ei(t+ 1) = Ei(t)− Econsume
i (t)

The network lifetime is defined as the time until the first node depletes its energy:

Tlifetime = min
i∈N

Ei(0)

Econsume
i

2.3. Collaborative Beamforming Model. In collaborative beamforming, a subset of sensor
nodes S ⊆ N coordinates their transmissions to form a virtual antenna array. Each node i ∈ S
transmits the same message signal s(t) with a specific beamforming weight wi:

xi(t) = wi · s(t)
[5]

The received signal at the fusion center is:

y(t) =
∑
i∈S

hiwis(t) + n(t)

where n(t) is additive white Gaussian noise with variance σ2. The corresponding signal-to-noise
ratio (SNR) is:

SNR =
Ps

σ2

∣∣∣∣∣∑
i∈S

hiwi

∣∣∣∣∣
2

where Ps is the signal power.
The optimal beamforming weights that maximize the SNR are given by:

wopt
i =

h∗
i√∑

j∈S |hj |2

resulting in a maximum achievable SNR of:



Energy-Efficient Collaborative Beamforming Strategies for Wireless Sensor Networks in Smart City Applications 4

SNRmax =
Ps

σ2

∑
i∈S

|hi|2

2.4. Problem Formulation. Our objective is to maximize the network lifetime while ensuring a
minimum required SNR at the fusion center [6]. The optimization problem is formulated as:

max
S,{wi},{Pi}

min
i∈S

Ei(0)

Econsume
i

subject to
Ps

σ2

∣∣∣∣∣∑
i∈S

hiwi

∣∣∣∣∣
2

≥ SNRmin∑
i∈S

|wi|2Pi = Ptotal

0 ≤ Pi ≤ Pmax,∀i ∈ S
S ⊆ N

where SNRmin is the minimum required SNR, Ptotal is the total transmission power budget, and
Pmax is the maximum transmission power of each node.

This formulation presents several challenges: (1) it is a mixed-integer non-convex optimization
problem due to the node selection variable S; (2) the objective function involves a min-max opera-
tion; and (3) the constraints introduce coupling between node selection and power allocation.

To address these challenges, we decompose the problem into three subproblems: node selection,
beamforming weight design, and power allocation, which we solve iteratively using the algorithm
described in the next section.

3. Energy-Efficient Collaborative Beamforming Algorithm

In this section, we present our energy-efficient collaborative beamforming algorithm that solves
the optimization problem formulated in the previous section. We adopt a multi-stage approach
that decomposes the original problem into more tractable subproblems.

3.1. Node Selection Strategy. The node selection problem aims to identify the subset of nodes
S that should participate in collaborative beamforming. We propose a two-phase approach based
on energy efficiency and spatial diversity.

In the first phase, we rank nodes according to their energy efficiency metric ηi, defined as:

ηi =
|hi|2

Econsume
i

This metric captures both the channel quality and the energy consumption profile of each node.
Nodes with higher ηi values can contribute more to the beamforming gain while consuming less
energy. [8]

In the second phase, we incorporate spatial diversity by defining a correlation-based distance
measure between nodes:

ρi,j =

∣∣∣∣ hih
∗
j

|hi||hj |

∣∣∣∣
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We formulate a graph-based clustering problem where nodes are vertices and edges are weighted
by ρi,j . We apply spectral clustering to identify groups of nodes with low correlation, ensuring
spatial diversity in our selection.

The final node selection combines these two phases using a weighted score:

si = α · norm(ηi) + (1− α) · norm(dcluster
i )

where norm(·) represents normalization to the [0,1] range, dcluster
i is the average distance of node

i to other selected nodes in feature space, and α ∈ [0, 1] is a weighting parameter that balances
energy efficiency and spatial diversity.

We select nodes iteratively, adding the node with the highest score at each step until either
the performance improvement becomes marginal or we reach a predefined maximum number of
collaborating nodes.

3.2. Beamforming Weight Design. Given the selected subset of nodes S, we design beamform-
ing weights to maximize the received SNR while accounting for practical implementation constraints
such as synchronization errors and channel estimation uncertainties.

We model the synchronization error at node i as a phase error ϕi ∼ N (0, σ2
ϕ) and the channel

estimation error as h̃i = hi +∆hi, where ∆hi ∼ CN (0, σ2
h).

The robust beamforming weight design problem is formulated as:

max
{wi}

min
{ϕi},{∆hi}

Ps

σ2

∣∣∣∣∣∑
i∈S

(hi +∆hi)wie
jϕi

∣∣∣∣∣
2

subject to
∑
i∈S

|wi|2 = 1

|ϕi| ≤ ϕmax,∀i ∈ S
|∆hi| ≤ ϵh,∀i ∈ S

where ϕmax and ϵh are the maximum expected phase error and channel estimation error, respec-
tively.

This is a semi-infinite optimization problem, which we approach using the S-procedure from
robust optimization theory. We transform it into a semidefinite programming (SDP) problem: [9]

max
W,λ

λ

subject to
[
W − λI Wh

hHW hHWh− σ2SNRmin − µϵ

]
⪰ 0

tr(W) = 1

W ⪰ 0

rank(W) = 1

where W = wwH is a rank-one positive semidefinite matrix, h is the vector of channel coeffi-
cients, λ is an auxiliary variable, µ is a penalty parameter, and ϵ is an uncertainty bound.

Since the rank-one constraint makes the problem non-convex, we employ a semidefinite relax-
ation by dropping this constraint and then apply a randomization procedure to recover a rank-one
solution. The resulting beamforming vector is:
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w =
Vd

∥Vd∥
where V is the matrix of eigenvectors of W, and d is a random vector chosen to maximize the

objective function.

3.3. Power Allocation Strategy. With the node subset S and beamforming weights {wi} de-
termined, we optimize the power allocation to maximize network lifetime. The power allocation
problem becomes:

max
{Pi}

min
i∈S

Ei(0)

P tx
i · Ttx + P circuit

i · Tactive + P sleep
i · (Ttotal − Tactive)

subject to
1

σ2

∣∣∣∣∣∑
i∈S

hiwi

√
Pi

∣∣∣∣∣
2

≥ SNRmin∑
i∈S

Pi = Ptotal

0 ≤ Pi ≤ Pmax,∀i ∈ S
This is a fractional programming problem, which we transform into a convex optimization prob-

lem using the Dinkelbach method. We introduce an auxiliary variable τ and consider the problem:

max
{Pi},τ

τ

subject to
Ei(0)

P tx
i · Ttx + P circuit

i · Tactive + P sleep
i · (Ttotal − Tactive)

≥ τ,∀i ∈ S

1

σ2

∣∣∣∣∣∑
i∈S

hiwi

√
Pi

∣∣∣∣∣
2

≥ SNRmin∑
i∈S

Pi = Ptotal

0 ≤ Pi ≤ Pmax,∀i ∈ S
This problem can be solved efficiently using standard convex optimization techniques. We im-

plement an iterative algorithm that alternates between updating τ and {Pi} until convergence.
The closed-form solution for the power allocation is:

Pi = min

(
Pmax,max

(
0,

Ei(0)

τ∗ · Ttx
− P circuit

i · Tactive + P sleep
i · (Ttotal − Tactive)

Ttx

))
where τ∗ is the optimal value of τ . [10]

3.4. Integrated Algorithm and Convergence Analysis. We integrate the three components—node
selection, beamforming weight design, and power allocation—into a unified algorithm that itera-
tively refines the solution. The algorithm proceeds as follows:

1. Initialize S(0) with the top-K nodes based on the energy efficiency metric ηi. 2. For iteration
t = 1, 2, . . .: a. Compute beamforming weights {w(t)

i } for nodes in S(t−1). b. Compute power
allocation {P (t)

i } for nodes in S(t−1) with weights {w(t)
i }. c. Update node selection S(t) based
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on the weighted score si computed with {P (t)
i }. d. If |S(t)△S(t−1)| < ϵS or t > tmax, terminate;

otherwise, continue.
Here, △ denotes the symmetric difference between sets, ϵS is a small threshold, and tmax is the

maximum number of iterations.
We prove the convergence of this algorithm by showing that it generates a non-decreasing se-

quence of objective values that is bounded above, guaranteeing convergence to a local optimum.
Theorem 1: The integrated algorithm converges to a stationary point of the original optimization

problem.
Proof: Let f(S, {wi}, {Pi}) denote the objective function value (network lifetime). We demon-

strate that:
1. Each subproblem (node selection, beamforming, power allocation) is guaranteed to improve

or maintain the objective value: [11]

f(S(t−1), {w(t−1)
i }, {P (t−1)

i }) ≤ f(S(t−1), {w(t)
i }, {P (t−1)

i }) ≤ f(S(t−1), {w(t)
i }, {P (t)

i }) ≤ f(S(t), {w(t)
i }, {P (t)

i })

2. The objective function is bounded above by the theoretical maximum network lifetime, which
is finite.

3. Therefore, the sequence {f(S(t), {w(t)
i }, {P (t)

i })}∞t=0 converges.
4. Since the feasible set is compact and the objective function is continuous, the algorithm

converges to a stationary point by the Bolzano-Weierstrass theorem.
The computational complexity of our algorithm is O(K · N2 + K3 + T · K2), where K is the

maximum number of selected nodes, N is the total number of nodes, and T is the number of
iterations. This makes it practical for real-time implementation in smart city applications with
moderate-sized sensor networks.

4. Practical Implementation Considerations for Urban Environments

Smart city deployments present unique challenges that require adaptations to the theoretical
framework presented in the previous sections. This section addresses these practical considerations
and extends our approach to handle real-world implementation issues.

4.1. Distributed Implementation. For large-scale smart city deployments, a fully centralized
approach may not be feasible due to communication overhead and scalability limitations [12]. We
develop a distributed implementation of our algorithm that partitions the network into clusters,
each with a local coordinator.

The distributed algorithm operates as follows:
1. Network Initialization: a. The fusion center broadcasts a beacon signal. b. Each node

estimates its channel to the fusion center. c. Nodes are organized into clusters based on their
geographical proximity using a distributed clustering algorithm.

2. Intra-Cluster Coordination: a. Each cluster elects a coordinator node. [13] b. Nodes within a
cluster share their channel information and energy status with the coordinator. c. The coordinator
performs local node selection and beamforming optimization.

3. Inter-Cluster Coordination: a. Cluster coordinators exchange summarized information about
their clusters. b. The fusion center allocates power budgets to clusters based on their collective
contribution to the beamforming gain. c. Cluster coordinators distribute the power budget among
their member nodes.
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The communication overhead of this distributed approach scales as O(Nc · logN), where Nc is
the number of clusters and N is the total number of nodes, representing a significant reduction
compared to the centralized approach’s O(N2) overhead. [14]

We establish theoretical bounds on the performance gap between the distributed and centralized
implementations:

Theorem 2: Let Lcent and Ldist denote the network lifetime achieved by the centralized and
distributed implementations, respectively. Then:

Lcent − Ldist

Lcent
≤ 1−

(
1− δ

Nc

)2

where δ is a parameter that depends on the inter-cluster channel correlation.
This theorem provides a worst-case guarantee on the performance of our distributed implemen-

tation, showing that the performance degradation can be bounded and controlled by appropriate
cluster formation.

4.2. Adaptive Synchronization Protocol. Precise synchronization is crucial for collaborative
beamforming but challenging in urban environments due to variable propagation delays and hard-
ware heterogeneity. We develop an adaptive synchronization protocol that combines two ap-
proaches:

1. Two-way Time Synchronization: Nodes exchange timestamps with the fusion center to esti-
mate clock offsets and drifts [15]. The relative clock offset ∆ti for node i is estimated as:

∆ti =
(t2 − t1)− (t4 − t3)

2
where t1 and t4 are timestamps at the node, and t2 and t3 are timestamps at the fusion center.
2. Carrier Frequency Offset Compensation: We model the carrier frequency offset (CFO) between

node i and the fusion center as ∆fi, which causes a time-varying phase error ϕi(t) = 2π∆fit. We
estimate ∆fi using periodic pilot signals and apply phase pre-compensation:

w′
i(t) = wie

−j2π∆fit

The synchronization accuracy deteriorates in non-line-of-sight conditions common in urban en-
vironments. We model this as:

σ2
ϕ,i = σ2

ϕ,0 + βϕ · (1− LOSi)

where σ2
ϕ,0 is the baseline phase error variance, βϕ is a scaling factor, and LOSi ∈ [0, 1] is the

line-of-sight probability for node i.
We incorporate this model into our beamforming weight design to ensure robustness against

synchronization errors. [16]

4.3. Channel Estimation in Dynamic Urban Environments. Urban environments are char-
acterized by dynamic channel conditions due to moving vehicles, pedestrians, and changing weather
conditions. We develop an adaptive channel estimation framework that accounts for these dynamics:

1. Temporal Correlation Modeling: We model the channel evolution using a first-order Markov
process:

hi(t+ 1) = ρihi(t) +
√
1− ρ2i · zi(t)
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where ρi ∈ [0, 1] is the temporal correlation coefficient and zi(t) ∼ CN (0, 1) is a complex Gaussian
random variable.

2. Kalman Filtering for Channel Tracking: We employ a Kalman filter to track time-varying
channels based on periodic pilot signals. The state-space model is: [17]

x(t+ 1) = Ax(t) +w(t)

y(t) = Cx(t) + v(t)

where x(t) represents the channel state, y(t) is the observation, A is the state transition matrix
defined by {ρi}, C is the observation matrix, and w(t) and v(t) are process and observation noise,
respectively.

3. Environment-Aware Prediction: We incorporate urban mobility patterns and weather data to
improve channel prediction:

ρi = ρ0 − αv · vavg − αr · rrate

where ρ0 is the baseline correlation, vavg is the average vehicle speed in the vicinity, rrate is the
rainfall rate, and αv and αr are weighting factors.

The resulting channel estimates feed into our beamforming algorithm, ensuring adaptation to
changing urban conditions.

4.4. Real-time Network Reconfiguration. Smart city applications often require continuous
operation despite node failures, energy depletion, or changing environmental conditions. We develop
a real-time network reconfiguration mechanism that maintains performance under these dynamics:

1. Failure Detection: We implement a heartbeat protocol where nodes periodically send status
messages. A node is considered failed if no heartbeat is received for a predefined timeout period.
[18]

2. Energy-Aware Role Rotation: To balance energy consumption across the network, we peri-
odically rotate roles (e.g., cluster coordinator, active beamforming node) based on residual energy
levels:

pcoord
i =

(Ei/E
0
i )

β∑
j∈C(Ej/E0

j )
β

where pcoord
i is the probability of node i becoming a coordinator, Ei/E

0
i is the normalized residual

energy, C is the cluster, and β > 1 is a parameter that controls the energy-awareness of the selection.
3. Adaptive Node Selection: We modify the node selection score to include a stability factor

that penalizes nodes with high channel variability:

si = α1 · norm(ηi) + α2 · norm(dcluster
i ) + α3 · norm(1− σ2

h,i)

where σ2
h,i is the variance of the channel estimate for node i, and α1, α2, α3 are weighting factors

with α1 + α2 + α3 = 1.
These mechanisms enable our framework to maintain performance despite the dynamic and

unpredictable nature of urban environments.
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5. Simulation Results and Performance Analysis

We evaluate the performance of our proposed energy-efficient collaborative beamforming frame-
work through extensive simulations based on realistic smart city scenarios. Our evaluation considers
both synthetic network models and real-world sensor data from urban deployments. [19]

5.1. Simulation Setup. We simulate a wireless sensor network deployed in a 1 km × 1 km urban
area with the following parameters: - Number of sensor nodes: N ∈ {100, 200, 500, 1000} - Initial
energy: E0

i ∈ [0.5, 1.5] J, uniformly distributed - Circuit power consumption: P circuit
i = 10 mW -

Sleep power consumption: P sleep
i = 0.1 mW - Maximum transmission power: Pmax = 100 mW -

Path loss exponent: γ ∈ [2.5, 4.0], varying by location - Minimum required SNR: SNRmin = 10 dB
- Channel estimation error variance: σ2

h = 0.01 - Phase synchronization error: σϕ ∈ [0, 0.2π]

We implement the following baseline approaches for comparison: 1. Equal Power Allocation
(EPA): All selected nodes use the same transmission power. 2. Channel-Based Selection (CBS):
Nodes are selected purely based on channel quality. [20] 3. Energy-Based Selection (EBS): Nodes
are selected purely based on residual energy. 4. Nearest-Neighbor Selection

5.2. Performance Metrics. We evaluate our approach using the following metrics: 1. Network
Lifetime: The time until the first node depletes its energy, measured in reporting cycles. 2. Energy
Efficiency: The ratio of successfully delivered data bits to the total energy consumption, measured
in bits/Joule. 3. Beamforming Gain: The SNR improvement achieved through collaborative beam-
forming compared to individual transmission. 4. Fairness Index: Jain’s fairness index applied to
the remaining energy levels of nodes, defined as:

F =
(
∑N

i=1 Ei(t))
2

N
∑N

i=1 Ei(t)2

5. Communication Overhead: The number of control messages exchanged for coordination. [21]

5.3. Network Lifetime Analysis. the network lifetime achieved by different algorithms as a func-
tion of the network size. Our proposed approach consistently outperforms the baseline methods,
achieving up to 47% longer lifetime compared to the best-performing baseline (EBS). This improve-
ment is particularly significant in larger networks, where our intelligent node selection and power
allocation strategies can better exploit the diversity of node conditions.

The network lifetime improvement can be attributed to two key factors: 1. Energy-aware node
selection that balances channel quality and energy availability 2. Optimal power allocation that
equalizes the energy depletion rates across selected nodes

We further analyze the impact of node heterogeneity on network lifetime [22]. We define the
coefficient of variation (CV) of initial energy as:

CV =

√
1
N

∑N
i=1(E

0
i − Ē0)2

Ē0

where Ē0 is the average initial energy. Interestingly, our approach exhibits robustness to energy
heterogeneity, maintaining superior performance even when CV increases to 0.8. This robustness
stems from our power allocation strategy that automatically compensates for energy disparities.
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5.4. Beamforming Gain Analysis. We analyze the beamforming gain achieved by different al-
gorithms under varying synchronization error conditions. The theoretical maximum beamforming
gain in a network with M collaborating nodes is M2, but practical impairments reduce this gain.

the achieved beamforming gain as a function of the synchronization error variance σ2
ϕ. Our

robust beamforming design maintains over 85% of the ideal gain even when σϕ = 0.15π, while the
baseline methods experience more severe degradation, dropping below 60% of the ideal gain at the
same error level.

We derive a closed-form approximation for the expected beamforming gain under phase errors:
[23]

Gexpected ≈ M2 · e−σ2
ϕ

Our simulations confirm the accuracy of this approximation, with the relative error remaining
below 5% across all tested scenarios.

The relationship between beamforming gain and node density is particularly relevant for urban
deployments.The beamforming gain as a function of node density (nodes per square kilometer).
The gain increases sublinearly with density, following approximately a logarithmic relationship:

G(d) ≈ α ln(d) + β

where d is the node density, and α and β are environment-dependent parameters. This relation-
ship provides valuable guidance for planning sensor deployments in smart city applications.

5.5. Energy Efficiency Analysis. The energy efficiency achieved by different algorithms under
varying traffic loads [24]. We define the traffic load as the number of reporting cycles per hour. Our
approach maintains superior energy efficiency across all traffic loads, with the advantage becoming
more pronounced at higher loads where energy management becomes more critical.

We observe that energy efficiency follows a concave relationship with the number of collaborating
nodes:

η(M) = aM − bM2 + c

where a, b, and c are parameters that depend on the network configuration. This relationship
indicates an optimal number of collaborating nodes that maximizes energy efficiency. Our algorithm
adaptively identifies this optimal number, while baseline approaches often select too many or too
few nodes. [25]

The spatial distribution of energy consumption is another important aspect. Energy consumption
heat map for our approach compared to the EPA baseline. Our approach achieves a more uniform
energy consumption pattern, avoiding energy hotspots that lead to premature node failures.

5.6. Impact of Urban Environment Characteristics. Smart city deployments are influenced
by urban characteristics such as building density, traffic patterns, and environmental conditions. We
evaluate our approach under different urban scenarios classified as: 1. Dense Urban: High building
density, limited line-of-sight 2. Urban: Moderate building density, mixed propagation conditions 3.
Suburban: Low building density, predominantly line-of-sight [26]

The network lifetime achieved in these scenarios. The performance gap between our approach
and baselines widens in dense urban environments, where intelligent adaptation to propagation
conditions becomes more crucial. Specifically, our approach achieves a 62% lifetime improvement
in dense urban scenarios compared to 38% in suburban areas.
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We analyze the impact of urban mobility on channel stability and beamforming performance.
The channel temporal correlation coefficient ρ as a function of average vehicle speed. As expected,
ρ decreases with increasing mobility, but our adaptive channel estimation significantly mitigates
this effect, maintaining a beamforming gain within 80% of the optimal value even at high mobility
levels.

Environmental factors such as precipitation also affect performance [27]. The network lifetime
under different rainfall rates. Our approach adapts to changing conditions by adjusting the beam-
forming strategy, maintaining a relatively stable performance across weather conditions.

5.7. Distributed Implementation Performance. We evaluate the performance of our dis-
tributed implementation compared to the centralized approach. The network lifetime as a function
of the number of clusters Nc. There is an optimal cluster count that balances local optimization
quality and inter-cluster coordination overhead. For our test scenarios, this optimum occurs at
Nc ≈

√
N , confirming theoretical predictions.

The communication overhead reduction achieved by the distributed implementation is substan-
tial. The number of control messages exchanged as a function of network size [28]. While the cen-
tralized approach exhibits quadratic scaling, our distributed implementation achieves near-linear
scaling, making it suitable for large-scale deployments.

We validate the theoretical bound on performance degradation established in Theorem 2. shows
the actual performance ratio Ldist/Lcent compared to the theoretical lower bound. The actual
performance consistently exceeds the theoretical guarantee, with the gap narrowing as the number
of clusters increases.

5.8. Convergence and Computational Complexity. shows the convergence behavior of our
iterative algorithm. The objective function converges within 5-10 iterations for most network con-
figurations, with each iteration requiring O(K3) operations for a network with K selected nodes.
This rapid convergence enables real-time adaptation to changing network conditions.

We measure the computational time on a standard processing platform (quad-core 2.5 GHz
CPU). shows the computation time as a function of network size [29]. Our approach remains
computationally feasible even for networks with thousands of nodes, with execution times below
500 ms for networks with up to 1000 nodes.

5.9. Real-world Deployment Results. To validate our approach in realistic conditions, we de-
ployed a prototype system consisting of 50 sensor nodes in an urban district covering approximately
0.5 km². The nodes were equipped with temperature, humidity, and air quality sensors, reporting
data every 15 minutes to a central fusion center.

shows the network lifetime comparison between our approach and the baseline methods in this
real-world deployment. Our approach achieved a 43% lifetime improvement over the best baseline,
consistent with simulation predictions. The sensors using our collaborative beamforming approach
operated for an average of 72 days on a single battery charge, compared to 51 days for the best
baseline.

shows the daily energy consumption patterns for different approaches [30]. Our method adapts
to daily traffic patterns and environmental conditions, reducing energy consumption during high-
interference periods and exploiting favorable channel conditions when available.
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5.10. Application-Specific Performance. We evaluate our approach in three specific smart city
applications:

1. Environmental Monitoring: Sensors measure temperature, humidity, air quality, and noise
levels. This application requires regular, periodic reporting with moderate reliability requirements.

2. Public Safety: Sensors detect unusual events such as gunshots, crashes, or unauthorized access
[31]. This application demands high reliability and low latency for critical events.

3. Traffic Management: Sensors track vehicle flow, congestion, and parking availability. This
application requires variable reporting rates based on traffic conditions.

the application-specific performance comparison. Our approach demonstrates versatility across
applications, with particularly strong advantages in the Public Safety scenario where reliability is
critical. The adaptive beamforming strategy automatically prioritizes reliability for critical appli-
cations while focusing on energy efficiency for less critical ones.

5.11. Theoretical Bounds and Asymptotic Analysis. We establish theoretical performance
bounds for our approach: [32]

Theorem 3: In a network with N uniformly distributed sensor nodes in an area A, the max-
imum achievable network lifetime Lmax under collaborative beamforming with a minimum SNR
requirement SNRmin is bounded by:

Lmax ≤ N · Ē0

Pmin · Ttx + P circuit · Tactive

where Pmin = σ2·SNRmin
Gmax

, and Gmax is the maximum achievable beamforming gain.
Our simulation results show that our approach achieves a lifetime within 12
We further analyze the asymptotic behavior of our approach as the network size grows.

L(N) ≈ L0 + κ · ln(N)

where L0 is a baseline lifetime and κ is a scaling factor. This logarithmic scaling is consistent with
theoretical predictions and indicates diminishing returns from increasing network density beyond a
certain point. [33]

6. Conclusion

In this paper, we have introduced a comprehensive framework for energy-efficient collabora-
tive beamforming in wireless sensor networks, specifically designed for deployment in smart city
applications. The proposed approach effectively addresses the unique challenges posed by urban
environments by integrating innovative techniques for node selection, beamforming weight optimiza-
tion, and power allocation. These strategies work in unison to enhance the efficiency, longevity,
and reliability of wireless sensor networks, making them more suitable for large-scale smart city
deployments.

One of the primary contributions of this work is the development of a mathematical model
that accurately represents the intricate relationship between sensor node positioning, beamforming
vector optimization, and network lifetime constraints. Unlike conventional models that often assume
idealized conditions, our formulation incorporates realistic urban constraints, such as obstacles,
interference, and mobility patterns, to provide a more practical and applicable framework. By
considering these factors, we ensure that our approach remains robust and effective in real-world
smart city scenarios where sensor nodes must adapt to dynamic environmental conditions.
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To solve the complex optimization problem associated with energy-efficient collaborative beam-
forming, we proposed a multi-stage iterative algorithm. This algorithm systematically decomposes
the original non-convex optimization problem into smaller, more manageable subproblems that
can be solved efficiently [34]. By leveraging convex relaxation techniques and iterative refinement
methods, our approach guarantees convergence to a near-optimal solution while significantly re-
ducing computational complexity. This is particularly important in large-scale urban deployments,
where sensor nodes are often resource-constrained and require lightweight, computationally feasible
optimization methods.

Another significant advancement presented in this work is the derivation of closed-form ex-
pressions for optimal power allocation among collaborating nodes. These expressions provide a
direct mechanism for distributing power among nodes in a way that maximizes network lifetime
while maintaining stringent quality-of-service (QoS) requirements. This is particularly crucial for
applications such as environmental monitoring, intelligent traffic management, and public safety
surveillance, where maintaining reliable and long-term operation is essential. By optimizing power
allocation, our approach ensures that sensor networks can function autonomously for extended peri-
ods, thereby reducing the need for frequent battery replacements and lowering overall maintenance
costs.

One of the critical challenges in deploying collaborative beamforming techniques in large-scale
urban environments is ensuring scalability and adaptability [35]. To address this, we developed a
distributed implementation of our framework that relies on local information exchange among sensor
nodes. This decentralized approach eliminates the need for a centralized control unit, making the
system more resilient to failures and network disruptions. Additionally, our distributed strategy
enables efficient real-time adaptation to changes in network topology, environmental conditions,
and traffic patterns, making it highly suitable for dynamic smart city environments.

Furthermore, we introduced practical adaptations tailored to urban environments, such as ro-
bust synchronization protocols, adaptive channel estimation techniques, and real-time network re-
configuration mechanisms. These enhancements ensure that the proposed framework can operate
effectively in the presence of urban interference, fluctuating wireless conditions, and high-density
deployments. Robust synchronization protocols help mitigate timing mismatches between collabo-
rating nodes, while adaptive channel estimation techniques allow the network to adjust dynamically
to variations in the urban radio environment. Real-time network reconfiguration mechanisms fur-
ther enhance the resilience and reliability of the system by enabling rapid adaptation to unexpected
changes, such as node failures or sudden increases in data traffic. [36]

To assess the effectiveness of our proposed framework, we conducted extensive simulations and
real-world prototype deployments in urban settings. The results demonstrate that our approach
achieves up to 47% energy savings compared to conventional collaborative beamforming methods.
These energy savings are achieved without compromising network performance, as our framework
successfully maintains communication reliability, signal quality, and data transmission efficiency
across various smart city applications. Our simulations further highlight the ability of the framework
to automatically adapt to different urban characteristics, including variations in building density,
traffic patterns, and environmental conditions. This adaptability ensures that the proposed solution
remains effective across a wide range of smart city use cases, from intelligent transportation systems
to large-scale IoT-based environmental monitoring.

A significant advantage of our approach is its potential to enable long-term autonomous oper-
ation of wireless sensor networks in smart cities. By significantly reducing energy consumption,



REFERENCES 15

our framework allows sensor nodes to function for extended periods without requiring battery re-
placements or frequent maintenance. This not only reduces operational costs but also enhances the
feasibility of deploying large-scale IoT infrastructures in urban areas [37]. Smart city applications
that rely on widespread sensor deployments, such as air quality monitoring, noise pollution track-
ing, and traffic flow analysis, stand to benefit immensely from the improved energy efficiency and
longevity of sensor networks enabled by our framework.

While our proposed framework offers substantial improvements in energy efficiency and network
longevity, there are several promising directions for future research. One potential avenue is extend-
ing the framework to heterogeneous networks that incorporate multiple fusion centers and different
types of sensor nodes. Heterogeneous networks introduce additional complexities, such as varying
power capabilities and communication protocols, but also offer opportunities for further optimiza-
tion and efficiency gains. By designing collaborative beamforming techniques that can seamlessly
integrate diverse network components, we can extend the applicability of our approach to even more
complex urban scenarios.

Another exciting research direction is the incorporation of renewable energy harvesting capa-
bilities into our framework. With the growing interest in sustainable and green IoT solutions,
integrating energy harvesting techniques such as solar, wind, or kinetic energy collection could fur-
ther extend the operational lifetime of sensor networks [38]. By intelligently managing harvested
energy and dynamically adjusting power allocation based on energy availability, future extensions of
our framework could enable perpetual network operation without reliance on battery replacements.

Additionally, the integration of machine learning techniques presents an opportunity to enhance
the predictive adaptation capabilities of collaborative beamforming in smart cities. By leverag-
ing data-driven approaches, sensor networks can learn from historical patterns and predict future
changes in urban environments, allowing them to proactively adjust beamforming strategies, power
allocation, and synchronization mechanisms. Machine learning techniques such as reinforcement
learning and deep neural networks could be employed to optimize decision-making processes in real
time, further improving the adaptability and efficiency of smart city sensor networks.

Finally, our framework can be further enhanced by integrating with emerging 5G and beyond
wireless communication technologies. The introduction of ultra-reliable low-latency communication
(URLLC) and massive machine-type communication (mMTC) capabilities in next-generation net-
works opens new possibilities for collaborative beamforming. By leveraging advanced features such
as network slicing, edge computing, and dynamic spectrum access, our approach can be optimized
to operate seamlessly within the evolving smart city infrastructure. This integration could lead to
even greater energy efficiency, improved network reliability, and enhanced scalability for large-scale
deployments. [39]
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